1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#![cfg_attr(not(test), no_std)]
#![warn(rust_2018_idioms, unreachable_pub)]
#![forbid(unsafe_code)]

//! This crate provides bitmap fonts for the [`embedded-graphics`] crate. Those don't only look
//! better than the [built-in fonts](embedded_graphics::mono_font) by using the good-looking
//! [Tamzen font](https://github.com/sunaku/tamzen-font) over a font that renders `.` like a `+`,
//! but also allow scaling fonts by pixel-doubling them, giving you two font sizes for the flash
//! size requirements of the smaller one.
//!
//! See the [`tamzen`] module for a list of all included fonts.
//!
//! # Usage
//!
//! ```rust
//! use bitmap_font::{tamzen::FONT_8x15, BitmapFont, TextStyle};
//! use embedded_graphics::{pixelcolor::BinaryColor, prelude::*, text::Text};
//! # use core::convert::Infallible;
//! # struct Display;
//! # impl OriginDimensions for Display {
//! #   fn size(&self) -> Size { unimplemented!() }
//! # }
//! # impl DrawTarget for Display {
//! #   type Color = BinaryColor;
//! #   type Error = Infallible;
//! #   fn draw_iter<I>(&mut self, pixels: I) -> Result<(), Infallible>
//! #   where I: IntoIterator<Item = Pixel<BinaryColor>>
//! #   { Ok(()) }
//! # }
//! # fn main() -> Result<(), Infallible> {
//! # let mut display = Display;
//!
//! // Draw text 'Hello World!' with the top left corner being the origin
//! let text = Text::new("Hello World!", Point::zero(), TextStyle::new(&FONT_8x15, BinaryColor::On));
//! text.draw(&mut display)?;
//! # Ok(())
//! # }
//! ```
//!
//!  [`embedded-graphics`]: embedded_graphics

use embedded_graphics::{
	draw_target::DrawTarget,
	geometry::{Dimensions, OriginDimensions, Point, Size},
	image::{ImageDrawable, ImageRaw},
	mono_font::mapping::GlyphMapping,
	pixelcolor::BinaryColor,
	primitives::Rectangle,
	text::{
		renderer::{TextMetrics, TextRenderer},
		Baseline
	},
	Pixel
};

pub mod tamzen;

/// Stores the font bitmap and some additional info for each font.
#[derive(Clone, Copy)]
pub struct BitmapFont<'a> {
	/// The raw bitmap data for the font.
	bitmap: ImageRaw<'a, BinaryColor>,

	/// The char to glyph mapping.
	glyph_mapping: &'a dyn GlyphMapping,

	/// The size of each character in the raw bitmap data.
	size: Size,

	/// The amount of pixels to draw per each font pixel. Must not be `0`. Set to `2` for
	/// pixel-double font.
	pixels: u8
}

impl<'a> BitmapFont<'a> {
	/// Return the width of each character.
	pub const fn width(self) -> u32 {
		self.size.width * self.pixels as u32
	}

	/// Return the height of each character.
	pub const fn height(self) -> u32 {
		self.size.height * self.pixels as u32
	}

	/// Draw a glyph to the `target` with `color` at position `pos`.
	pub fn draw_glyph<D>(&self, idx: u32, target: &mut D, color: BinaryColor, pos: Point) -> Result<(), D::Error>
	where
		D: DrawTarget<Color = BinaryColor>
	{
		let char_per_row = self.bitmap.size().width / self.size.width;
		let row = idx / char_per_row;

		// index in the raw bitmap
		let char_x = (idx - (row * char_per_row)) * self.size.width;
		let char_y = row * self.size.height;
		let area = Rectangle::new(Point::new(char_x as _, char_y as _), self.size);

		// draw the glyph, suitably pixel-doubled
		let mut pixel_doubling_target = PixelDoublingDrawTarget {
			target,
			color,
			offset: pos,
			pixels: self.pixels
		};
		self.bitmap.draw_sub_image(&mut pixel_doubling_target, &area)?;

		Ok(())
	}

	/// Returns a pixel-double version of this font.
	pub const fn pixel_double(mut self) -> Self {
		self.pixels *= 2;
		self
	}
}

/// The equivalent of [`MonoTextStyle`][embedded_graphics::mono_font::MonoTextStyle] for [`BitmapFont`].
#[derive(Clone, Copy)]
#[non_exhaustive]
pub struct TextStyle<'a> {
	pub font: &'a BitmapFont<'a>,
	pub color: BinaryColor
}

impl<'a> TextStyle<'a> {
	pub fn new(font: &'a BitmapFont<'a>, color: BinaryColor) -> Self {
		Self { font, color }
	}
}

impl<'a> TextRenderer for TextStyle<'a> {
	type Color = BinaryColor;

	fn draw_string<D>(&self, text: &str, mut pos: Point, _: Baseline, target: &mut D) -> Result<Point, D::Error>
	where
		D: DrawTarget<Color = Self::Color>
	{
		for c in text.chars() {
			let glyph_idx = self.font.glyph_mapping.index(c) as u32;
			self.font.draw_glyph(glyph_idx, target, self.color, pos)?;
			pos += Size::new(self.font.width(), 0);
		}
		Ok(pos)
	}

	fn draw_whitespace<D>(&self, width: u32, pos: Point, _: Baseline, _: &mut D) -> Result<Point, D::Error>
	where
		D: DrawTarget<Color = Self::Color>
	{
		// we don't draw background nor text decorations
		Ok(pos + Size::new(width * self.font.width(), 0))
	}

	fn measure_string(&self, text: &str, pos: Point, _: Baseline) -> TextMetrics {
		let size = Size::new(self.font.width() * text.len() as u32, self.font.height());
		TextMetrics {
			bounding_box: Rectangle::new(pos, size),
			next_position: pos + Size::new(size.width, 0)
		}
	}

	fn line_height(&self) -> u32 {
		self.font.height()
	}
}

/// A pixel-doubling draw target. This works by intercepting all drawing operations, and doubling
/// all pixels from the point of the origin. **This means you need to carefully select your
/// origin!** All drawing operations, after being pixel-doubled (i.e. multiplied by the amount
/// of pixels specified), will be offseted to map your custom origin to the `target`'s origin.
///
/// Also, this target draws `color` for all pixels that are on, and nothing for all pixels
/// that are off.
struct PixelDoublingDrawTarget<'a, D: DrawTarget<Color = BinaryColor>> {
	target: &'a mut D,
	color: BinaryColor,
	offset: Point,
	pixels: u8
}

impl<'a, D> Dimensions for PixelDoublingDrawTarget<'a, D>
where
	D: DrawTarget<Color = BinaryColor>
{
	fn bounding_box(&self) -> Rectangle {
		let mut bb = self.target.bounding_box();
		bb.top_left -= self.offset;
		bb.top_left /= self.pixels as _;
		bb.size /= self.pixels as _;
		bb
	}
}

impl<'a, D> DrawTarget for PixelDoublingDrawTarget<'a, D>
where
	D: DrawTarget<Color = BinaryColor>
{
	type Color = BinaryColor;
	type Error = D::Error;

	fn draw_iter<I>(&mut self, pixel_iter: I) -> Result<(), Self::Error>
	where
		I: IntoIterator<Item = Pixel<BinaryColor>>
	{
		let color = self.color;
		let offset = self.offset;
		let pixels = self.pixels;
		self.target.draw_iter(
			pixel_iter
				.into_iter()
				.filter(|pixel| pixel.1 == BinaryColor::On)
				.flat_map(|pixel| PixelDoublingIterator::new(pixel, pixels).map(|pixel| Pixel(pixel.0 + offset, color)))
		)
	}
}

struct PixelDoublingIterator {
	color: BinaryColor,
	pos: Point,
	// pixels traveled in x direction
	x: u8,
	// remaining after this one
	remaining_x: u8,
	// remaining including this one
	remaining_y: u8
}

impl PixelDoublingIterator {
	fn new(pixel: Pixel<BinaryColor>, pixels: u8) -> Self {
		Self {
			color: pixel.1,
			pos: pixel.0 * pixels as _,
			x: 0,
			remaining_x: pixels - 1,
			remaining_y: pixels
		}
	}
}

impl Iterator for PixelDoublingIterator {
	type Item = Pixel<BinaryColor>;

	fn next(&mut self) -> Option<Pixel<BinaryColor>> {
		if self.remaining_y == 0 {
			return None;
		}

		let pixel = Pixel(self.pos, self.color);
		if self.remaining_x > 0 {
			self.remaining_x -= 1;
			self.x += 1;
			self.pos.x += 1;
		} else {
			self.pos.x -= self.x as i32;
			self.remaining_x = self.x;
			self.x = 0;

			self.remaining_y -= 1;
			self.pos.y += 1;
		}
		Some(pixel)
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	fn px(x: i32, y: i32) -> Pixel<BinaryColor> {
		Pixel(Point::new(x, y), BinaryColor::On)
	}

	#[test]
	fn pixel_doubling_iterator() {
		assert_eq!(PixelDoublingIterator::new(px(0, 0), 1).collect::<Vec<_>>(), vec![px(0, 0)]);
		assert_eq!(PixelDoublingIterator::new(px(1, 2), 1).collect::<Vec<_>>(), vec![px(1, 2)]);

		assert_eq!(PixelDoublingIterator::new(px(0, 0), 2).collect::<Vec<_>>(), vec![
			px(0, 0),
			px(1, 0),
			px(0, 1),
			px(1, 1)
		]);
		assert_eq!(PixelDoublingIterator::new(px(1, 2), 2).collect::<Vec<_>>(), vec![
			px(2, 4),
			px(3, 4),
			px(2, 5),
			px(3, 5)
		]);

		assert_eq!(PixelDoublingIterator::new(px(0, 0), 3).collect::<Vec<_>>(), vec![
			px(0, 0),
			px(1, 0),
			px(2, 0),
			px(0, 1),
			px(1, 1),
			px(2, 1),
			px(0, 2),
			px(1, 2),
			px(2, 2)
		]);
		assert_eq!(PixelDoublingIterator::new(px(1, 2), 3).collect::<Vec<_>>(), vec![
			px(3, 6),
			px(4, 6),
			px(5, 6),
			px(3, 7),
			px(4, 7),
			px(5, 7),
			px(3, 8),
			px(4, 8),
			px(5, 8)
		]);
	}
}