1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generating random samples from probability distributions
//!
//! This module is the home of the [`Distribution`] trait and several of its
//! implementations. It is the workhorse behind some of the convenient
//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`] and of course
//! [`Rng::sample`].
//!
//! Abstractly, a [probability distribution] describes the probability of
//! occurrence of each value in its sample space.
//!
//! More concretely, an implementation of `Distribution<T>` for type `X` is an
//! algorithm for choosing values from the sample space (a subset of `T`)
//! according to the distribution `X` represents, using an external source of
//! randomness (an RNG supplied to the `sample` function).
//!
//! A type `X` may implement `Distribution<T>` for multiple types `T`.
//! Any type implementing [`Distribution`] is stateless (i.e. immutable),
//! but it may have internal parameters set at construction time (for example,
//! [`Uniform`] allows specification of its sample space as a range within `T`).
//!
//!
//! # The `Standard` distribution
//!
//! The [`Standard`] distribution is important to mention. This is the
//! distribution used by [`Rng::gen`] and represents the "default" way to
//! produce a random value for many different types, including most primitive
//! types, tuples, arrays, and a few derived types. See the documentation of
//! [`Standard`] for more details.
//!
//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it
//! possible to generate type `T` with [`Rng::gen`], and by extension also
//! with the [`random`] function.
//!
//! ## Random characters
//!
//! [`Alphanumeric`] is a simple distribution to sample random letters and
//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
//! `char`.
//!
//!
//! # Uniform numeric ranges
//!
//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
//! more specialised: it supports fewer target types, but allows the sample
//! space to be specified as an arbitrary range within its target type `T`.
//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions.
//!
//! Values may be sampled from this distribution using [`Rng::sample(Range)`] or
//! by creating a distribution object with [`Uniform::new`],
//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not
//! known at compile time it is typically faster to reuse an existing
//! `Uniform` object than to call [`Rng::sample(Range)`].
//!
//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
//! although this is less straightforward than for [`Standard`] (see the
//! documentation in the [`uniform`] module). Doing so enables generation of
//! values of type `T` with [`Rng::sample(Range)`].
//!
//! ## Open and half-open ranges
//!
//! There are surprisingly many ways to uniformly generate random floats. A
//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
//! [`Standard`] documentation for more details.
//!
//! # Non-uniform sampling
//!
//! Sampling a simple true/false outcome with a given probability has a name:
//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
//!
//! For weighted sampling from a sequence of discrete values, use the
//! [`WeightedIndex`] distribution.
//!
//! This crate no longer includes other non-uniform distributions; instead
//! it is recommended that you use either [`rand_distr`] or [`statrs`].
//!
//!
//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`statrs`]: https://crates.io/crates/statrs
//! [`random`]: crate::random
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`statrs`]: https://crates.io/crates/statrs
use crate::Rng;
use core::iter;
pub use self::bernoulli::{Bernoulli, BernoulliError};
pub use self::float::{Open01, OpenClosed01};
pub use self::other::Alphanumeric;
#[doc(inline)] pub use self::uniform::Uniform;
#[cfg(feature = "alloc")]
pub use self::weighted_index::{WeightedError, WeightedIndex};
mod bernoulli;
pub mod uniform;
#[deprecated(since = "0.8.0", note = "use rand::distributions::{WeightedIndex, WeightedError} instead")]
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub mod weighted;
#[cfg(feature = "alloc")] mod weighted_index;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
mod float;
#[doc(hidden)]
pub mod hidden_export {
pub use super::float::IntoFloat; // used by rand_distr
}
mod integer;
mod other;
mod utils;
/// Types (distributions) that can be used to create a random instance of `T`.
///
/// It is possible to sample from a distribution through both the
/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
/// produces an iterator that samples from the distribution.
///
/// All implementations are expected to be immutable; this has the significant
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
/// Implementations are typically expected to be portable with reproducible
/// results when used with a PRNG with fixed seed; see the
/// [portability chapter](https://rust-random.github.io/book/portability.html)
/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
/// type requires different sampling on 32-bit and 64-bit machines.
///
/// [`sample_iter`]: Distribution::method.sample_iter
pub trait Distribution<T> {
/// Generate a random value of `T`, using `rng` as the source of randomness.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
/// Create an iterator that generates random values of `T`, using `rng` as
/// the source of randomness.
///
/// Note that this function takes `self` by value. This works since
/// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
/// however borrowing is not automatic hence `distr.sample_iter(...)` may
/// need to be replaced with `(&distr).sample_iter(...)` to borrow or
/// `(&*distr).sample_iter(...)` to reborrow an existing reference.
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
///
/// // String:
/// let s: String = Alphanumeric
/// .sample_iter(&mut rng)
/// .take(7)
/// .map(char::from)
/// .collect();
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
/// let mut roll_die = die_range.sample_iter(&mut rng);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
where
R: Rng,
Self: Sized,
{
DistIter {
distr: self,
rng,
phantom: ::core::marker::PhantomData,
}
}
}
impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
(*self).sample(rng)
}
}
/// An iterator that generates random values of `T` with distribution `D`,
/// using `R` as the source of randomness.
///
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
pub struct DistIter<D, R, T> {
distr: D,
rng: R,
phantom: ::core::marker::PhantomData<T>,
}
impl<D, R, T> Iterator for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
type Item = T;
#[inline(always)]
fn next(&mut self) -> Option<T> {
// Here, self.rng may be a reference, but we must take &mut anyway.
// Even if sample could take an R: Rng by value, we would need to do this
// since Rng is not copyable and we cannot enforce that this is "reborrowable".
Some(self.distr.sample(&mut self.rng))
}
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::max_value(), None)
}
}
impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
}
#[cfg(features = "nightly")]
impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
}
/// A generic random value distribution, implemented for many primitive types.
/// Usually generates values with a numerically uniform distribution, and with a
/// range appropriate to the type.
///
/// ## Provided implementations
///
/// Assuming the provided `Rng` is well-behaved, these implementations
/// generate values with the following ranges and distributions:
///
/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
/// over all values of the type.
/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
/// code points in the range `0...0x10_FFFF`, except for the range
/// `0xD800...0xDFFF` (the surrogate code points). This includes
/// unassigned/reserved code points.
/// * `bool`: Generates `false` or `true`, each with probability 0.5.
/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
/// half-open range `[0, 1)`. See notes below.
/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
/// normal integer variants.
///
/// The `Standard` distribution also supports generation of the following
/// compound types where all component types are supported:
///
/// * Tuples (up to 12 elements): each element is generated sequentially.
/// * Arrays (up to 32 elements): each element is generated sequentially;
/// see also [`Rng::fill`] which supports arbitrary array length for integer
/// types and tends to be faster for `u32` and smaller types.
/// * `Option<T>` first generates a `bool`, and if true generates and returns
/// `Some(value)` where `value: T`, otherwise returning `None`.
///
/// ## Custom implementations
///
/// The [`Standard`] distribution may be implemented for user types as follows:
///
/// ```
/// # #![allow(dead_code)]
/// use rand::Rng;
/// use rand::distributions::{Distribution, Standard};
///
/// struct MyF32 {
/// x: f32,
/// }
///
/// impl Distribution<MyF32> for Standard {
/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
/// MyF32 { x: rng.gen() }
/// }
/// }
/// ```
///
/// ## Example usage
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Standard;
///
/// let val: f32 = StdRng::from_entropy().sample(Standard);
/// println!("f32 from [0, 1): {}", val);
/// ```
///
/// # Floating point implementation
/// The floating point implementations for `Standard` generate a random value in
/// the half-open interval `[0, 1)`, i.e. including 0 but not 1.
///
/// All values that can be generated are of the form `n * ε/2`. For `f32`
/// the 24 most significant random bits of a `u32` are used and for `f64` the
/// 53 most significant bits of a `u64` are used. The conversion uses the
/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
///
/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
/// samples from `(0, 1]` and `Rng::gen_range(0..1)` which also samples from
/// `[0, 1)`. Note that `Open01` uses transmute-based methods which yield 1 bit
/// less precision but may perform faster on some architectures (on modern Intel
/// CPUs all methods have approximately equal performance).
///
/// [`Uniform`]: uniform::Uniform
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Standard;
#[cfg(test)]
mod tests {
use super::{Distribution, Uniform};
use crate::Rng;
#[test]
fn test_distributions_iter() {
use crate::distributions::Open01;
let mut rng = crate::test::rng(210);
let distr = Open01;
let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng);
let mut sum: f32 = 0.;
for _ in 0..100 {
sum += iter.next().unwrap();
}
assert!(0. < sum && sum < 100.);
}
#[test]
fn test_make_an_iter() {
fn ten_dice_rolls_other_than_five<'a, R: Rng>(
rng: &'a mut R,
) -> impl Iterator<Item = i32> + 'a {
Uniform::new_inclusive(1, 6)
.sample_iter(rng)
.filter(|x| *x != 5)
.take(10)
}
let mut rng = crate::test::rng(211);
let mut count = 0;
for val in ten_dice_rolls_other_than_five(&mut rng) {
assert!(val >= 1 && val <= 6 && val != 5);
count += 1;
}
assert_eq!(count, 10);
}
}