logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Low-level API for sampling indices

#[cfg(feature = "alloc")] use core::slice;

#[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
// BTreeMap is not as fast in tests, but better than nothing.
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::collections::BTreeSet;
#[cfg(feature = "std")] use std::collections::HashSet;

#[cfg(feature = "alloc")]
use crate::distributions::{uniform::SampleUniform, Distribution, Uniform};
#[cfg(feature = "std")]
use crate::distributions::WeightedError;
use crate::Rng;

#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};

/// A vector of indices.
///
/// Multiple internal representations are possible.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum IndexVec {
    #[doc(hidden)]
    U32(Vec<u32>),
    #[doc(hidden)]
    USize(Vec<usize>),
}

impl IndexVec {
    /// Returns the number of indices
    #[inline]
    pub fn len(&self) -> usize {
        match *self {
            IndexVec::U32(ref v) => v.len(),
            IndexVec::USize(ref v) => v.len(),
        }
    }

    /// Returns `true` if the length is 0.
    #[inline]
    pub fn is_empty(&self) -> bool {
        match *self {
            IndexVec::U32(ref v) => v.is_empty(),
            IndexVec::USize(ref v) => v.is_empty(),
        }
    }

    /// Return the value at the given `index`.
    ///
    /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
    /// restrictions.)
    #[inline]
    pub fn index(&self, index: usize) -> usize {
        match *self {
            IndexVec::U32(ref v) => v[index] as usize,
            IndexVec::USize(ref v) => v[index],
        }
    }

    /// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
    #[inline]
    pub fn into_vec(self) -> Vec<usize> {
        match self {
            IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
            IndexVec::USize(v) => v,
        }
    }

    /// Iterate over the indices as a sequence of `usize` values
    #[inline]
    pub fn iter(&self) -> IndexVecIter<'_> {
        match *self {
            IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
            IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
        }
    }
}

impl IntoIterator for IndexVec {
    type Item = usize;
    type IntoIter = IndexVecIntoIter;

    /// Convert into an iterator over the indices as a sequence of `usize` values
    #[inline]
    fn into_iter(self) -> IndexVecIntoIter {
        match self {
            IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
            IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
        }
    }
}

impl PartialEq for IndexVec {
    fn eq(&self, other: &IndexVec) -> bool {
        use self::IndexVec::*;
        match (self, other) {
            (&U32(ref v1), &U32(ref v2)) => v1 == v2,
            (&USize(ref v1), &USize(ref v2)) => v1 == v2,
            (&U32(ref v1), &USize(ref v2)) => {
                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
            }
            (&USize(ref v1), &U32(ref v2)) => {
                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
            }
        }
    }
}

impl From<Vec<u32>> for IndexVec {
    #[inline]
    fn from(v: Vec<u32>) -> Self {
        IndexVec::U32(v)
    }
}

impl From<Vec<usize>> for IndexVec {
    #[inline]
    fn from(v: Vec<usize>) -> Self {
        IndexVec::USize(v)
    }
}

/// Return type of `IndexVec::iter`.
#[derive(Debug)]
pub enum IndexVecIter<'a> {
    #[doc(hidden)]
    U32(slice::Iter<'a, u32>),
    #[doc(hidden)]
    USize(slice::Iter<'a, usize>),
}

impl<'a> Iterator for IndexVecIter<'a> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        use self::IndexVecIter::*;
        match *self {
            U32(ref mut iter) => iter.next().map(|i| *i as usize),
            USize(ref mut iter) => iter.next().cloned(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match *self {
            IndexVecIter::U32(ref v) => v.size_hint(),
            IndexVecIter::USize(ref v) => v.size_hint(),
        }
    }
}

impl<'a> ExactSizeIterator for IndexVecIter<'a> {}

/// Return type of `IndexVec::into_iter`.
#[derive(Clone, Debug)]
pub enum IndexVecIntoIter {
    #[doc(hidden)]
    U32(vec::IntoIter<u32>),
    #[doc(hidden)]
    USize(vec::IntoIter<usize>),
}

impl Iterator for IndexVecIntoIter {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        use self::IndexVecIntoIter::*;
        match *self {
            U32(ref mut v) => v.next().map(|i| i as usize),
            USize(ref mut v) => v.next(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        use self::IndexVecIntoIter::*;
        match *self {
            U32(ref v) => v.size_hint(),
            USize(ref v) => v.size_hint(),
        }
    }
}

impl ExactSizeIterator for IndexVecIntoIter {}


/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in random order (fully shuffled).
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// The implementation used is not specified; we automatically select the
/// fastest available algorithm for the `length` and `amount` parameters
/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
/// complexity is `O(amount)`, except that when `amount` is small, performance
/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
/// `O(length)`.
///
/// Note that performance is significantly better over `u32` indices than over
/// `u64` indices. Because of this we hide the underlying type behind an
/// abstraction, `IndexVec`.
///
/// If an allocation-free `no_std` function is required, it is suggested
/// to adapt the internal `sample_floyd` implementation.
///
/// Panics if `amount > length`.
pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
where R: Rng + ?Sized {
    if amount > length {
        panic!("`amount` of samples must be less than or equal to `length`");
    }
    if length > (::core::u32::MAX as usize) {
        // We never want to use inplace here, but could use floyd's alg
        // Lazy version: always use the cache alg.
        return sample_rejection(rng, length, amount);
    }
    let amount = amount as u32;
    let length = length as u32;

    // Choice of algorithm here depends on both length and amount. See:
    // https://github.com/rust-random/rand/pull/479
    // We do some calculations with f32. Accuracy is not very important.

    if amount < 163 {
        const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
        let j = if length < 500_000 { 0 } else { 1 };
        let amount_fp = amount as f32;
        let m4 = C[0][j] * amount_fp;
        // Short-cut: when amount < 12, floyd's is always faster
        if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
            sample_inplace(rng, length, amount)
        } else {
            sample_floyd(rng, length, amount)
        }
    } else {
        const C: [f32; 2] = [270.0, 330.0 / 9.0];
        let j = if length < 500_000 { 0 } else { 1 };
        if (length as f32) < C[j] * (amount as f32) {
            sample_inplace(rng, length, amount)
        } else {
            sample_rejection(rng, length, amount)
        }
    }
}

/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in an arbitrary order (there is no guarantee of shuffling or
/// ordering). The weights are to be provided by the input function `weights`,
/// which will be called once for each index.
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// This implementation uses `O(length + amount)` space and `O(length)` time
/// if the "nightly" feature is enabled, or `O(length)` space and
/// `O(length + amount * log length)` time otherwise.
///
/// Panics if `amount > length`.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn sample_weighted<R, F, X>(
    rng: &mut R, length: usize, weight: F, amount: usize,
) -> Result<IndexVec, WeightedError>
where
    R: Rng + ?Sized,
    F: Fn(usize) -> X,
    X: Into<f64>,
{
    if length > (core::u32::MAX as usize) {
        sample_efraimidis_spirakis(rng, length, weight, amount)
    } else {
        assert!(amount <= core::u32::MAX as usize);
        let amount = amount as u32;
        let length = length as u32;
        sample_efraimidis_spirakis(rng, length, weight, amount)
    }
}


/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in an arbitrary order (there is no guarantee of shuffling or
/// ordering). The weights are to be provided by the input function `weights`,
/// which will be called once for each index.
///
/// This implementation uses the algorithm described by Efraimidis and Spirakis
/// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
/// It uses `O(length + amount)` space and `O(length)` time if the
/// "nightly" feature is enabled, or `O(length)` space and `O(length
/// + amount * log length)` time otherwise.
///
/// Panics if `amount > length`.
#[cfg(feature = "std")]
fn sample_efraimidis_spirakis<R, F, X, N>(
    rng: &mut R, length: N, weight: F, amount: N,
) -> Result<IndexVec, WeightedError>
where
    R: Rng + ?Sized,
    F: Fn(usize) -> X,
    X: Into<f64>,
    N: UInt,
    IndexVec: From<Vec<N>>,
{
    if amount == N::zero() {
        return Ok(IndexVec::U32(Vec::new()));
    }

    if amount > length {
        panic!("`amount` of samples must be less than or equal to `length`");
    }

    struct Element<N> {
        index: N,
        key: f64,
    }
    impl<N> PartialOrd for Element<N> {
        fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
            self.key.partial_cmp(&other.key)
        }
    }
    impl<N> Ord for Element<N> {
        fn cmp(&self, other: &Self) -> core::cmp::Ordering {
             // partial_cmp will always produce a value,
             // because we check that the weights are not nan
            self.partial_cmp(other).unwrap()
        }
    }
    impl<N> PartialEq for Element<N> {
        fn eq(&self, other: &Self) -> bool {
            self.key == other.key
        }
    }
    impl<N> Eq for Element<N> {}

    #[cfg(feature = "nightly")]
    {
        let mut candidates = Vec::with_capacity(length.as_usize());
        let mut index = N::zero();
        while index < length {
            let weight = weight(index.as_usize()).into();
            if !(weight >= 0.) {
                return Err(WeightedError::InvalidWeight);
            }

            let key = rng.gen::<f64>().powf(1.0 / weight);
            candidates.push(Element { index, key });

            index += N::one();
        }

        // Partially sort the array to find the `amount` elements with the greatest
        // keys. Do this by using `select_nth_unstable` to put the elements with
        // the *smallest* keys at the beginning of the list in `O(n)` time, which
        // provides equivalent information about the elements with the *greatest* keys.
        let (_, mid, greater)
            = candidates.select_nth_unstable(length.as_usize() - amount.as_usize());

        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
        result.push(mid.index);
        for element in greater {
            result.push(element.index);
        }
        Ok(IndexVec::from(result))
    }

    #[cfg(not(feature = "nightly"))]
    {
        use std::collections::BinaryHeap;

        // Partially sort the array such that the `amount` elements with the largest
        // keys are first using a binary max heap.
        let mut candidates = BinaryHeap::with_capacity(length.as_usize());
        let mut index = N::zero();
        while index < length {
            let weight = weight(index.as_usize()).into();
            if !(weight >= 0.) {
                return Err(WeightedError::InvalidWeight);
            }

            let key = rng.gen::<f64>().powf(1.0 / weight);
            candidates.push(Element { index, key });

            index += N::one();
        }

        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
        while result.len() < amount.as_usize() {
            result.push(candidates.pop().unwrap().index);
        }
        Ok(IndexVec::from(result))
    }
}

/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
/// combination algorithm.
///
/// The output values are fully shuffled. (Overhead is under 50%.)
///
/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
    // For small amount we use Floyd's fully-shuffled variant. For larger
    // amounts this is slow due to Vec::insert performance, so we shuffle
    // afterwards. Benchmarks show little overhead from extra logic.
    let floyd_shuffle = amount < 50;

    debug_assert!(amount <= length);
    let mut indices = Vec::with_capacity(amount as usize);
    for j in length - amount..length {
        let t = rng.gen_range(0..=j);
        if floyd_shuffle {
            if let Some(pos) = indices.iter().position(|&x| x == t) {
                indices.insert(pos, j);
                continue;
            }
        } else if indices.contains(&t) {
            indices.push(j);
            continue;
        }
        indices.push(t);
    }
    if !floyd_shuffle {
        // Reimplement SliceRandom::shuffle with smaller indices
        for i in (1..amount).rev() {
            // invariant: elements with index > i have been locked in place.
            indices.swap(i as usize, rng.gen_range(0..=i) as usize);
        }
    }
    IndexVec::from(indices)
}

/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
/// partial Fisher-Yates method.
/// Sample an amount of indices using an inplace partial fisher yates method.
///
/// This allocates the entire `length` of indices and randomizes only the first `amount`.
/// It then truncates to `amount` and returns.
///
/// This method is not appropriate for large `length` and potentially uses a lot
/// of memory; because of this we only implement for `u32` index (which improves
/// performance in all cases).
///
/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
    debug_assert!(amount <= length);
    let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
    indices.extend(0..length);
    for i in 0..amount {
        let j: u32 = rng.gen_range(i..length);
        indices.swap(i as usize, j as usize);
    }
    indices.truncate(amount as usize);
    debug_assert_eq!(indices.len(), amount as usize);
    IndexVec::from(indices)
}

trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
    + core::hash::Hash + core::ops::AddAssign {
    fn zero() -> Self;
    fn one() -> Self;
    fn as_usize(self) -> usize;
}
impl UInt for u32 {
    #[inline]
    fn zero() -> Self {
        0
    }

    #[inline]
    fn one() -> Self {
        1
    }

    #[inline]
    fn as_usize(self) -> usize {
        self as usize
    }
}
impl UInt for usize {
    #[inline]
    fn zero() -> Self {
        0
    }

    #[inline]
    fn one() -> Self {
        1
    }

    #[inline]
    fn as_usize(self) -> usize {
        self
    }
}

/// Randomly sample exactly `amount` indices from `0..length`, using rejection
/// sampling.
///
/// Since `amount <<< length` there is a low chance of a random sample in
/// `0..length` being a duplicate. We test for duplicates and resample where
/// necessary. The algorithm is `O(amount)` time and memory.
///
/// This function  is generic over X primarily so that results are value-stable
/// over 32-bit and 64-bit platforms.
fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
where
    R: Rng + ?Sized,
    IndexVec: From<Vec<X>>,
{
    debug_assert!(amount < length);
    #[cfg(feature = "std")]
    let mut cache = HashSet::with_capacity(amount.as_usize());
    #[cfg(not(feature = "std"))]
    let mut cache = BTreeSet::new();
    let distr = Uniform::new(X::zero(), length);
    let mut indices = Vec::with_capacity(amount.as_usize());
    for _ in 0..amount.as_usize() {
        let mut pos = distr.sample(rng);
        while !cache.insert(pos) {
            pos = distr.sample(rng);
        }
        indices.push(pos);
    }

    debug_assert_eq!(indices.len(), amount.as_usize());
    IndexVec::from(indices)
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[cfg(feature = "serde1")]
    fn test_serialization_index_vec() {
        let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
        let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
        match (some_index_vec, de_some_index_vec) {
            (IndexVec::U32(a), IndexVec::U32(b)) => {
                assert_eq!(a, b);
            },
            (IndexVec::USize(a), IndexVec::USize(b)) => {
                assert_eq!(a, b);
            },
            _ => {panic!("failed to seralize/deserialize `IndexVec`")}
        }
    }

    #[cfg(feature = "alloc")] use alloc::vec;

    #[test]
    fn test_sample_boundaries() {
        let mut r = crate::test::rng(404);

        assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
        assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
        assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);

        assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);

        assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
        assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
        assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);

        // These algorithms should be fast with big numbers. Test average.
        let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
        assert!(1 << 25 < sum && sum < (1 << 25) * 25);

        let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
        assert!(1 << 25 < sum && sum < (1 << 25) * 25);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_sample_alg() {
        let seed_rng = crate::test::rng;

        // We can't test which algorithm is used directly, but Floyd's alg
        // should produce different results from the others. (Also, `inplace`
        // and `cached` currently use different sizes thus produce different results.)

        // A small length and relatively large amount should use inplace
        let (length, amount): (usize, usize) = (100, 50);
        let v1 = sample(&mut seed_rng(420), length, amount);
        let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
        assert!(v1.iter().all(|e| e < length));
        assert_eq!(v1, v2);

        // Test Floyd's alg does produce different results
        let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
        assert!(v1 != v3);

        // A large length and small amount should use Floyd
        let (length, amount): (usize, usize) = (1 << 20, 50);
        let v1 = sample(&mut seed_rng(421), length, amount);
        let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
        assert!(v1.iter().all(|e| e < length));
        assert_eq!(v1, v2);

        // A large length and larger amount should use cache
        let (length, amount): (usize, usize) = (1 << 20, 600);
        let v1 = sample(&mut seed_rng(422), length, amount);
        let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
        assert!(v1.iter().all(|e| e < length));
        assert_eq!(v1, v2);
    }

    #[cfg(feature = "std")]
    #[test]
    fn test_sample_weighted() {
        let seed_rng = crate::test::rng;
        for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
            let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
            match v {
                IndexVec::U32(mut indices) => {
                    assert_eq!(indices.len(), amount);
                    indices.sort();
                    indices.dedup();
                    assert_eq!(indices.len(), amount);
                    for &i in &indices {
                        assert!((i as usize) < len);
                    }
                },
                IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
            }
        }
    }

    #[test]
    fn value_stability_sample() {
        let do_test = |length, amount, values: &[u32]| {
            let mut buf = [0u32; 8];
            let mut rng = crate::test::rng(410);

            let res = sample(&mut rng, length, amount);
            let len = res.len().min(buf.len());
            for (x, y) in res.into_iter().zip(buf.iter_mut()) {
                *y = x as u32;
            }
            assert_eq!(
                &buf[0..len],
                values,
                "failed sampling {}, {}",
                length,
                amount
            );
        };

        do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
        do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
        do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
        do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
        do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace

        do_test(1000_000, 8, &[
            103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
        ]); // floyd
        do_test(1000_000, 180, &[
            103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
        ]); // rejection
    }
}