1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
use super::dep_cache::RegistryQueryer;
use super::errors::ActivateResult;
use super::types::{ConflictMap, ConflictReason, FeaturesSet, ResolveOpts};
use super::RequestedFeatures;
use crate::core::{Dependency, PackageId, SourceId, Summary};
use crate::util::interning::InternedString;
use crate::util::Graph;
use anyhow::format_err;
use log::debug;
use std::collections::HashMap;
use std::num::NonZeroU64;
pub use super::encode::Metadata;
pub use super::encode::{EncodableDependency, EncodablePackageId, EncodableResolve};
pub use super::resolve::Resolve;
// A `Context` is basically a bunch of local resolution information which is
// kept around for all `BacktrackFrame` instances. As a result, this runs the
// risk of being cloned *a lot* so we want to make this as cheap to clone as
// possible.
#[derive(Clone)]
pub struct Context {
pub age: ContextAge,
pub activations: Activations,
/// list the features that are activated for each package
pub resolve_features: im_rc::HashMap<PackageId, FeaturesSet>,
/// get the package that will be linking to a native library by its links attribute
pub links: im_rc::HashMap<InternedString, PackageId>,
/// for each package the list of names it can see,
/// then for each name the exact version that name represents and weather the name is public.
pub public_dependency: Option<PublicDependency>,
/// a way to look up for a package in activations what packages required it
/// and all of the exact deps that it fulfilled.
pub parents: Graph<PackageId, im_rc::HashSet<Dependency>>,
}
/// When backtracking it can be useful to know how far back to go.
/// The `ContextAge` of a `Context` is a monotonically increasing counter of the number
/// of decisions made to get to this state.
/// Several structures store the `ContextAge` when it was added,
/// to be used in `find_candidate` for backtracking.
pub type ContextAge = usize;
/// Find the activated version of a crate based on the name, source, and semver compatibility.
/// By storing this in a hash map we ensure that there is only one
/// semver compatible version of each crate.
/// This all so stores the `ContextAge`.
pub type ActivationsKey = (InternedString, SourceId, SemverCompatibility);
pub type Activations = im_rc::HashMap<ActivationsKey, (Summary, ContextAge)>;
/// A type that represents when cargo treats two Versions as compatible.
/// Versions `a` and `b` are compatible if their left-most nonzero digit is the
/// same.
#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug, PartialOrd, Ord)]
pub enum SemverCompatibility {
Major(NonZeroU64),
Minor(NonZeroU64),
Patch(u64),
}
impl From<&semver::Version> for SemverCompatibility {
fn from(ver: &semver::Version) -> Self {
if let Some(m) = NonZeroU64::new(ver.major) {
return SemverCompatibility::Major(m);
}
if let Some(m) = NonZeroU64::new(ver.minor) {
return SemverCompatibility::Minor(m);
}
SemverCompatibility::Patch(ver.patch)
}
}
impl PackageId {
pub fn as_activations_key(self) -> ActivationsKey {
(self.name(), self.source_id(), self.version().into())
}
}
impl Context {
pub fn new(check_public_visible_dependencies: bool) -> Context {
Context {
age: 0,
resolve_features: im_rc::HashMap::new(),
links: im_rc::HashMap::new(),
public_dependency: if check_public_visible_dependencies {
Some(PublicDependency::new())
} else {
None
},
parents: Graph::new(),
activations: im_rc::HashMap::new(),
}
}
/// Activate this summary by inserting it into our list of known activations.
///
/// The `parent` passed in here is the parent summary/dependency edge which
/// cased `summary` to get activated. This may not be present for the root
/// crate, for example.
///
/// Returns `true` if this summary with the given features is already activated.
pub fn flag_activated(
&mut self,
summary: &Summary,
opts: &ResolveOpts,
parent: Option<(&Summary, &Dependency)>,
) -> ActivateResult<bool> {
let id = summary.package_id();
let age: ContextAge = self.age;
match self.activations.entry(id.as_activations_key()) {
im_rc::hashmap::Entry::Occupied(o) => {
debug_assert_eq!(
&o.get().0,
summary,
"cargo does not allow two semver compatible versions"
);
}
im_rc::hashmap::Entry::Vacant(v) => {
if let Some(link) = summary.links() {
if self.links.insert(link, id).is_some() {
return Err(format_err!(
"Attempting to resolve a dependency with more than \
one crate with links={}.\nThis will not build as \
is. Consider rebuilding the .lock file.",
&*link
)
.into());
}
}
v.insert((summary.clone(), age));
// If we've got a parent dependency which activated us, *and*
// the dependency has a different source id listed than the
// `summary` itself, then things get interesting. This basically
// means that a `[patch]` was used to augment `dep.source_id()`
// with `summary`.
//
// In this scenario we want to consider the activation key, as
// viewed from the perspective of `dep.source_id()`, as being
// fulfilled. This means that we need to add a second entry in
// the activations map for the source that was patched, in
// addition to the source of the actual `summary` itself.
//
// Without this it would be possible to have both 1.0.0 and
// 1.1.0 "from crates.io" in a dependency graph if one of those
// versions came from a `[patch]` source.
if let Some((_, dep)) = parent {
if dep.source_id() != id.source_id() {
let key = (id.name(), dep.source_id(), id.version().into());
let prev = self.activations.insert(key, (summary.clone(), age));
if let Some((previous_summary, _)) = prev {
return Err(
(previous_summary.package_id(), ConflictReason::Semver).into()
);
}
}
}
return Ok(false);
}
}
debug!("checking if {} is already activated", summary.package_id());
match &opts.features {
// This returns `false` for CliFeatures just for simplicity. It
// would take a bit of work to compare since they are not in the
// same format as DepFeatures (and that may be expensive
// performance-wise). Also, it should only occur once for a root
// package. The only drawback is that it may re-activate a root
// package again, which should only affect performance, but that
// should be rare. Cycles should still be detected since those
// will have `DepFeatures` edges.
RequestedFeatures::CliFeatures(_) => Ok(false),
RequestedFeatures::DepFeatures {
features,
uses_default_features,
} => {
let has_default_feature = summary.features().contains_key("default");
Ok(match self.resolve_features.get(&id) {
Some(prev) => {
features.is_subset(prev)
&& (!uses_default_features
|| prev.contains("default")
|| !has_default_feature)
}
None => features.is_empty() && (!uses_default_features || !has_default_feature),
})
}
}
}
/// If the package is active returns the `ContextAge` when it was added
pub fn is_active(&self, id: PackageId) -> Option<ContextAge> {
self.activations
.get(&id.as_activations_key())
.and_then(|(s, l)| if s.package_id() == id { Some(*l) } else { None })
}
/// If the conflict reason on the package still applies returns the `ContextAge` when it was added
pub fn still_applies(&self, id: PackageId, reason: &ConflictReason) -> Option<ContextAge> {
self.is_active(id).and_then(|mut max| {
match reason {
ConflictReason::PublicDependency(name) => {
if &id == name {
return Some(max);
}
max = std::cmp::max(max, self.is_active(*name)?);
max = std::cmp::max(
max,
self.public_dependency
.as_ref()
.unwrap()
.can_see_item(*name, id)?,
);
}
ConflictReason::PubliclyExports(name) => {
if &id == name {
return Some(max);
}
max = std::cmp::max(max, self.is_active(*name)?);
max = std::cmp::max(
max,
self.public_dependency
.as_ref()
.unwrap()
.publicly_exports_item(*name, id)?,
);
}
_ => {}
}
Some(max)
})
}
/// Checks whether all of `parent` and the keys of `conflicting activations`
/// are still active.
/// If so returns the `ContextAge` when the newest one was added.
pub fn is_conflicting(
&self,
parent: Option<PackageId>,
conflicting_activations: &ConflictMap,
) -> Option<usize> {
let mut max = 0;
if let Some(parent) = parent {
max = std::cmp::max(max, self.is_active(parent)?);
}
for (id, reason) in conflicting_activations.iter() {
max = std::cmp::max(max, self.still_applies(*id, reason)?);
}
Some(max)
}
pub fn resolve_replacements(
&self,
registry: &RegistryQueryer<'_>,
) -> HashMap<PackageId, PackageId> {
self.activations
.values()
.filter_map(|(s, _)| registry.used_replacement_for(s.package_id()))
.collect()
}
pub fn graph(&self) -> Graph<PackageId, std::collections::HashSet<Dependency>> {
let mut graph: Graph<PackageId, std::collections::HashSet<Dependency>> = Graph::new();
self.activations
.values()
.for_each(|(r, _)| graph.add(r.package_id()));
for i in self.parents.iter() {
graph.add(*i);
for (o, e) in self.parents.edges(i) {
let old_link = graph.link(*o, *i);
assert!(old_link.is_empty());
*old_link = e.iter().cloned().collect();
}
}
graph
}
}
impl Graph<PackageId, im_rc::HashSet<Dependency>> {
pub fn parents_of(&self, p: PackageId) -> impl Iterator<Item = (PackageId, bool)> + '_ {
self.edges(&p)
.map(|(grand, d)| (*grand, d.iter().any(|x| x.is_public())))
}
}
#[derive(Clone, Debug, Default)]
pub struct PublicDependency {
/// For each active package the set of all the names it can see,
/// for each name the exact package that name resolves to,
/// the `ContextAge` when it was first visible,
/// and the `ContextAge` when it was first exported.
inner: im_rc::HashMap<
PackageId,
im_rc::HashMap<InternedString, (PackageId, ContextAge, Option<ContextAge>)>,
>,
}
impl PublicDependency {
fn new() -> Self {
PublicDependency {
inner: im_rc::HashMap::new(),
}
}
fn publicly_exports(&self, candidate_pid: PackageId) -> Vec<PackageId> {
self.inner
.get(&candidate_pid) // if we have seen it before
.iter()
.flat_map(|x| x.values()) // all the things we have stored
.filter(|x| x.2.is_some()) // as publicly exported
.map(|x| x.0)
.chain(Some(candidate_pid)) // but even if not we know that everything exports itself
.collect()
}
fn publicly_exports_item(
&self,
candidate_pid: PackageId,
target: PackageId,
) -> Option<ContextAge> {
debug_assert_ne!(candidate_pid, target);
let out = self
.inner
.get(&candidate_pid)
.and_then(|names| names.get(&target.name()))
.filter(|(p, _, _)| *p == target)
.and_then(|(_, _, age)| *age);
debug_assert_eq!(
out.is_some(),
self.publicly_exports(candidate_pid).contains(&target)
);
out
}
pub fn can_see_item(&self, candidate_pid: PackageId, target: PackageId) -> Option<ContextAge> {
self.inner
.get(&candidate_pid)
.and_then(|names| names.get(&target.name()))
.filter(|(p, _, _)| *p == target)
.map(|(_, age, _)| *age)
}
pub fn add_edge(
&mut self,
candidate_pid: PackageId,
parent_pid: PackageId,
is_public: bool,
age: ContextAge,
parents: &Graph<PackageId, im_rc::HashSet<Dependency>>,
) {
// one tricky part is that `candidate_pid` may already be active and
// have public dependencies of its own. So we not only need to mark
// `candidate_pid` as visible to its parents but also all of its existing
// publicly exported dependencies.
for c in self.publicly_exports(candidate_pid) {
// for each (transitive) parent that can newly see `t`
let mut stack = vec![(parent_pid, is_public)];
while let Some((p, public)) = stack.pop() {
match self.inner.entry(p).or_default().entry(c.name()) {
im_rc::hashmap::Entry::Occupied(mut o) => {
// the (transitive) parent can already see something by `c`s name, it had better be `c`.
assert_eq!(o.get().0, c);
if o.get().2.is_some() {
// The previous time the parent saw `c`, it was a public dependency.
// So all of its parents already know about `c`
// and we can save some time by stopping now.
continue;
}
if public {
// Mark that `c` has now bean seen publicly
let old_age = o.get().1;
o.insert((c, old_age, if public { Some(age) } else { None }));
}
}
im_rc::hashmap::Entry::Vacant(v) => {
// The (transitive) parent does not have anything by `c`s name,
// so we add `c`.
v.insert((c, age, if public { Some(age) } else { None }));
}
}
// if `candidate_pid` was a private dependency of `p` then `p` parents can't see `c` thru `p`
if public {
// if it was public, then we add all of `p`s parents to be checked
stack.extend(parents.parents_of(p));
}
}
}
}
pub fn can_add_edge(
&self,
b_id: PackageId,
parent: PackageId,
is_public: bool,
parents: &Graph<PackageId, im_rc::HashSet<Dependency>>,
) -> Result<
(),
(
((PackageId, ConflictReason), (PackageId, ConflictReason)),
Option<(PackageId, ConflictReason)>,
),
> {
// one tricky part is that `candidate_pid` may already be active and
// have public dependencies of its own. So we not only need to check
// `b_id` as visible to its parents but also all of its existing
// publicly exported dependencies.
for t in self.publicly_exports(b_id) {
// for each (transitive) parent that can newly see `t`
let mut stack = vec![(parent, is_public)];
while let Some((p, public)) = stack.pop() {
// TODO: don't look at the same thing more than once
if let Some(o) = self.inner.get(&p).and_then(|x| x.get(&t.name())) {
if o.0 != t {
// the (transitive) parent can already see a different version by `t`s name.
// So, adding `b` will cause `p` to have a public dependency conflict on `t`.
return Err((
(o.0, ConflictReason::PublicDependency(p)), // p can see the other version and
(parent, ConflictReason::PublicDependency(p)), // p can see us
))
.map_err(|e| {
if t == b_id {
(e, None)
} else {
(e, Some((t, ConflictReason::PubliclyExports(b_id))))
}
});
}
if o.2.is_some() {
// The previous time the parent saw `t`, it was a public dependency.
// So all of its parents already know about `t`
// and we can save some time by stopping now.
continue;
}
}
// if `b` was a private dependency of `p` then `p` parents can't see `t` thru `p`
if public {
// if it was public, then we add all of `p`s parents to be checked
stack.extend(parents.parents_of(p));
}
}
}
Ok(())
}
}