1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
//! # Serde JSON
//!
//! JSON is a ubiquitous open-standard format that uses human-readable text to
//! transmit data objects consisting of key-value pairs.
//!
//! ```json
//! {
//! "name": "John Doe",
//! "age": 43,
//! "address": {
//! "street": "10 Downing Street",
//! "city": "London"
//! },
//! "phones": [
//! "+44 1234567",
//! "+44 2345678"
//! ]
//! }
//! ```
//!
//! There are three common ways that you might find yourself needing to work
//! with JSON data in Rust.
//!
//! - **As text data.** An unprocessed string of JSON data that you receive on
//! an HTTP endpoint, read from a file, or prepare to send to a remote
//! server.
//! - **As an untyped or loosely typed representation.** Maybe you want to
//! check that some JSON data is valid before passing it on, but without
//! knowing the structure of what it contains. Or you want to do very basic
//! manipulations like insert a key in a particular spot.
//! - **As a strongly typed Rust data structure.** When you expect all or most
//! of your data to conform to a particular structure and want to get real
//! work done without JSON's loosey-goosey nature tripping you up.
//!
//! Serde JSON provides efficient, flexible, safe ways of converting data
//! between each of these representations.
//!
//! # Operating on untyped JSON values
//!
//! Any valid JSON data can be manipulated in the following recursive enum
//! representation. This data structure is [`serde_json::Value`][value].
//!
//! ```
//! # use serde_json::{Number, Map};
//! #
//! # #[allow(dead_code)]
//! enum Value {
//! Null,
//! Bool(bool),
//! Number(Number),
//! String(String),
//! Array(Vec<Value>),
//! Object(Map<String, Value>),
//! }
//! ```
//!
//! A string of JSON data can be parsed into a `serde_json::Value` by the
//! [`serde_json::from_str`][from_str] function. There is also
//! [`from_slice`][from_slice] for parsing from a byte slice &[u8] and
//! [`from_reader`][from_reader] for parsing from any `io::Read` like a File or
//! a TCP stream.
//!
//! ```
//! use serde_json::{Result, Value};
//!
//! fn untyped_example() -> Result<()> {
//! // Some JSON input data as a &str. Maybe this comes from the user.
//! let data = r#"
//! {
//! "name": "John Doe",
//! "age": 43,
//! "phones": [
//! "+44 1234567",
//! "+44 2345678"
//! ]
//! }"#;
//!
//! // Parse the string of data into serde_json::Value.
//! let v: Value = serde_json::from_str(data)?;
//!
//! // Access parts of the data by indexing with square brackets.
//! println!("Please call {} at the number {}", v["name"], v["phones"][0]);
//!
//! Ok(())
//! }
//! #
//! # fn main() {
//! # untyped_example().unwrap();
//! # }
//! ```
//!
//! The result of square bracket indexing like `v["name"]` is a borrow of the
//! data at that index, so the type is `&Value`. A JSON map can be indexed with
//! string keys, while a JSON array can be indexed with integer keys. If the
//! type of the data is not right for the type with which it is being indexed,
//! or if a map does not contain the key being indexed, or if the index into a
//! vector is out of bounds, the returned element is `Value::Null`.
//!
//! When a `Value` is printed, it is printed as a JSON string. So in the code
//! above, the output looks like `Please call "John Doe" at the number "+44
//! 1234567"`. The quotation marks appear because `v["name"]` is a `&Value`
//! containing a JSON string and its JSON representation is `"John Doe"`.
//! Printing as a plain string without quotation marks involves converting from
//! a JSON string to a Rust string with [`as_str()`] or avoiding the use of
//! `Value` as described in the following section.
//!
//! [`as_str()`]: https://docs.serde.rs/serde_json/enum.Value.html#method.as_str
//!
//! The `Value` representation is sufficient for very basic tasks but can be
//! tedious to work with for anything more significant. Error handling is
//! verbose to implement correctly, for example imagine trying to detect the
//! presence of unrecognized fields in the input data. The compiler is powerless
//! to help you when you make a mistake, for example imagine typoing `v["name"]`
//! as `v["nmae"]` in one of the dozens of places it is used in your code.
//!
//! # Parsing JSON as strongly typed data structures
//!
//! Serde provides a powerful way of mapping JSON data into Rust data structures
//! largely automatically.
//!
//! ```
//! use serde::{Deserialize, Serialize};
//! use serde_json::Result;
//!
//! #[derive(Serialize, Deserialize)]
//! struct Person {
//! name: String,
//! age: u8,
//! phones: Vec<String>,
//! }
//!
//! fn typed_example() -> Result<()> {
//! // Some JSON input data as a &str. Maybe this comes from the user.
//! let data = r#"
//! {
//! "name": "John Doe",
//! "age": 43,
//! "phones": [
//! "+44 1234567",
//! "+44 2345678"
//! ]
//! }"#;
//!
//! // Parse the string of data into a Person object. This is exactly the
//! // same function as the one that produced serde_json::Value above, but
//! // now we are asking it for a Person as output.
//! let p: Person = serde_json::from_str(data)?;
//!
//! // Do things just like with any other Rust data structure.
//! println!("Please call {} at the number {}", p.name, p.phones[0]);
//!
//! Ok(())
//! }
//! #
//! # fn main() {
//! # typed_example().unwrap();
//! # }
//! ```
//!
//! This is the same `serde_json::from_str` function as before, but this time we
//! assign the return value to a variable of type `Person` so Serde will
//! automatically interpret the input data as a `Person` and produce informative
//! error messages if the layout does not conform to what a `Person` is expected
//! to look like.
//!
//! Any type that implements Serde's `Deserialize` trait can be deserialized
//! this way. This includes built-in Rust standard library types like `Vec<T>`
//! and `HashMap<K, V>`, as well as any structs or enums annotated with
//! `#[derive(Deserialize)]`.
//!
//! Once we have `p` of type `Person`, our IDE and the Rust compiler can help us
//! use it correctly like they do for any other Rust code. The IDE can
//! autocomplete field names to prevent typos, which was impossible in the
//! `serde_json::Value` representation. And the Rust compiler can check that
//! when we write `p.phones[0]`, then `p.phones` is guaranteed to be a
//! `Vec<String>` so indexing into it makes sense and produces a `String`.
//!
//! # Constructing JSON values
//!
//! Serde JSON provides a [`json!` macro][macro] to build `serde_json::Value`
//! objects with very natural JSON syntax.
//!
//! ```
//! use serde_json::json;
//!
//! fn main() {
//! // The type of `john` is `serde_json::Value`
//! let john = json!({
//! "name": "John Doe",
//! "age": 43,
//! "phones": [
//! "+44 1234567",
//! "+44 2345678"
//! ]
//! });
//!
//! println!("first phone number: {}", john["phones"][0]);
//!
//! // Convert to a string of JSON and print it out
//! println!("{}", john.to_string());
//! }
//! ```
//!
//! The `Value::to_string()` function converts a `serde_json::Value` into a
//! `String` of JSON text.
//!
//! One neat thing about the `json!` macro is that variables and expressions can
//! be interpolated directly into the JSON value as you are building it. Serde
//! will check at compile time that the value you are interpolating is able to
//! be represented as JSON.
//!
//! ```
//! # use serde_json::json;
//! #
//! # fn random_phone() -> u16 { 0 }
//! #
//! let full_name = "John Doe";
//! let age_last_year = 42;
//!
//! // The type of `john` is `serde_json::Value`
//! let john = json!({
//! "name": full_name,
//! "age": age_last_year + 1,
//! "phones": [
//! format!("+44 {}", random_phone())
//! ]
//! });
//! ```
//!
//! This is amazingly convenient but we have the problem we had before with
//! `Value` which is that the IDE and Rust compiler cannot help us if we get it
//! wrong. Serde JSON provides a better way of serializing strongly-typed data
//! structures into JSON text.
//!
//! # Creating JSON by serializing data structures
//!
//! A data structure can be converted to a JSON string by
//! [`serde_json::to_string`][to_string]. There is also
//! [`serde_json::to_vec`][to_vec] which serializes to a `Vec<u8>` and
//! [`serde_json::to_writer`][to_writer] which serializes to any `io::Write`
//! such as a File or a TCP stream.
//!
//! ```
//! use serde::{Deserialize, Serialize};
//! use serde_json::Result;
//!
//! #[derive(Serialize, Deserialize)]
//! struct Address {
//! street: String,
//! city: String,
//! }
//!
//! fn print_an_address() -> Result<()> {
//! // Some data structure.
//! let address = Address {
//! street: "10 Downing Street".to_owned(),
//! city: "London".to_owned(),
//! };
//!
//! // Serialize it to a JSON string.
//! let j = serde_json::to_string(&address)?;
//!
//! // Print, write to a file, or send to an HTTP server.
//! println!("{}", j);
//!
//! Ok(())
//! }
//! #
//! # fn main() {
//! # print_an_address().unwrap();
//! # }
//! ```
//!
//! Any type that implements Serde's `Serialize` trait can be serialized this
//! way. This includes built-in Rust standard library types like `Vec<T>` and
//! `HashMap<K, V>`, as well as any structs or enums annotated with
//! `#[derive(Serialize)]`.
//!
//! # No-std support
//!
//! As long as there is a memory allocator, it is possible to use serde_json
//! without the rest of the Rust standard library. This is supported on Rust
//! 1.36+. Disable the default "std" feature and enable the "alloc" feature:
//!
//! ```toml
//! [dependencies]
//! serde_json = { version = "1.0", default-features = false, features = ["alloc"] }
//! ```
//!
//! For JSON support in Serde without a memory allocator, please see the
//! [`serde-json-core`] crate.
//!
//! [value]: https://docs.serde.rs/serde_json/value/enum.Value.html
//! [from_str]: https://docs.serde.rs/serde_json/de/fn.from_str.html
//! [from_slice]: https://docs.serde.rs/serde_json/de/fn.from_slice.html
//! [from_reader]: https://docs.serde.rs/serde_json/de/fn.from_reader.html
//! [to_string]: https://docs.serde.rs/serde_json/ser/fn.to_string.html
//! [to_vec]: https://docs.serde.rs/serde_json/ser/fn.to_vec.html
//! [to_writer]: https://docs.serde.rs/serde_json/ser/fn.to_writer.html
//! [macro]: https://docs.serde.rs/serde_json/macro.json.html
//! [`serde-json-core`]: https://github.com/rust-embedded-community/serde-json-core
#![doc(html_root_url = "https://docs.rs/serde_json/1.0.67")]
#![deny(clippy::all, clippy::pedantic)]
// Ignored clippy lints
#![allow(
clippy::comparison_chain,
clippy::deprecated_cfg_attr,
clippy::doc_markdown,
clippy::excessive_precision,
clippy::float_cmp,
clippy::manual_range_contains,
clippy::match_like_matches_macro,
clippy::match_single_binding,
clippy::needless_doctest_main,
clippy::transmute_ptr_to_ptr,
clippy::unnecessary_wraps,
// clippy bug: https://github.com/rust-lang/rust-clippy/issues/5704
clippy::unnested_or_patterns,
)]
// Ignored clippy_pedantic lints
#![allow(
// Deserializer::from_str, into_iter
clippy::should_implement_trait,
// integer and float ser/de requires these sorts of casts
clippy::cast_possible_truncation,
clippy::cast_possible_wrap,
clippy::cast_precision_loss,
clippy::cast_sign_loss,
// correctly used
clippy::enum_glob_use,
clippy::if_not_else,
clippy::integer_division,
clippy::map_err_ignore,
clippy::match_same_arms,
clippy::similar_names,
clippy::unused_self,
clippy::wildcard_imports,
// things are often more readable this way
clippy::cast_lossless,
clippy::module_name_repetitions,
clippy::redundant_else,
clippy::shadow_unrelated,
clippy::single_match_else,
clippy::too_many_lines,
clippy::unreadable_literal,
clippy::unseparated_literal_suffix,
clippy::use_self,
clippy::zero_prefixed_literal,
// we support older compilers
clippy::checked_conversions,
clippy::mem_replace_with_default,
// noisy
clippy::missing_errors_doc,
clippy::must_use_candidate,
)]
#![allow(non_upper_case_globals)]
#![deny(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(docsrs, feature(doc_cfg))]
////////////////////////////////////////////////////////////////////////////////
#[cfg(not(feature = "std"))]
extern crate alloc;
/// A facade around all the types we need from the `std`, `core`, and `alloc`
/// crates. This avoids elaborate import wrangling having to happen in every
/// module.
mod lib {
mod core {
#[cfg(not(feature = "std"))]
pub use core::*;
#[cfg(feature = "std")]
pub use std::*;
}
pub use self::core::cell::{Cell, RefCell};
pub use self::core::clone::{self, Clone};
pub use self::core::convert::{self, From, Into};
pub use self::core::default::{self, Default};
pub use self::core::fmt::{self, Debug, Display};
pub use self::core::hash::{self, Hash};
pub use self::core::iter::FusedIterator;
pub use self::core::marker::{self, PhantomData};
pub use self::core::ops::{Bound, RangeBounds};
pub use self::core::result::{self, Result};
pub use self::core::{borrow, char, cmp, iter, mem, num, ops, slice, str};
#[cfg(not(feature = "std"))]
pub use alloc::borrow::{Cow, ToOwned};
#[cfg(feature = "std")]
pub use std::borrow::{Cow, ToOwned};
#[cfg(not(feature = "std"))]
pub use alloc::string::{String, ToString};
#[cfg(feature = "std")]
pub use std::string::{String, ToString};
#[cfg(not(feature = "std"))]
pub use alloc::vec::{self, Vec};
#[cfg(feature = "std")]
pub use std::vec::{self, Vec};
#[cfg(not(feature = "std"))]
pub use alloc::boxed::Box;
#[cfg(feature = "std")]
pub use std::boxed::Box;
#[cfg(not(feature = "std"))]
pub use alloc::collections::{btree_map, BTreeMap};
#[cfg(feature = "std")]
pub use std::collections::{btree_map, BTreeMap};
#[cfg(feature = "std")]
pub use std::error;
}
////////////////////////////////////////////////////////////////////////////////
#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::de::from_reader;
#[doc(inline)]
pub use crate::de::{from_slice, from_str, Deserializer, StreamDeserializer};
#[doc(inline)]
pub use crate::error::{Error, Result};
#[doc(inline)]
pub use crate::ser::{to_string, to_string_pretty, to_vec, to_vec_pretty};
#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::ser::{to_writer, to_writer_pretty, Serializer};
#[doc(inline)]
pub use crate::value::{from_value, to_value, Map, Number, Value};
// We only use our own error type; no need for From conversions provided by the
// standard library's try! macro. This reduces lines of LLVM IR by 4%.
macro_rules! tri {
($e:expr) => {
match $e {
crate::lib::Result::Ok(val) => val,
crate::lib::Result::Err(err) => return crate::lib::Result::Err(err),
}
};
($e:expr,) => {
tri!($e)
};
}
#[macro_use]
mod macros;
pub mod de;
pub mod error;
pub mod map;
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub mod ser;
#[cfg(not(feature = "std"))]
mod ser;
pub mod value;
mod features_check;
mod io;
#[cfg(feature = "std")]
mod iter;
#[cfg(feature = "float_roundtrip")]
mod lexical;
mod number;
mod read;
#[cfg(feature = "raw_value")]
mod raw;