1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
use std::borrow::Borrow;
use std::collections::BTreeSet;
use std::fmt;

pub struct Graph<N: Clone, E: Clone> {
    nodes: im_rc::OrdMap<N, im_rc::OrdMap<N, E>>,
}

impl<N: Eq + Ord + Clone, E: Default + Clone> Graph<N, E> {
    pub fn new() -> Graph<N, E> {
        Graph {
            nodes: im_rc::OrdMap::new(),
        }
    }

    pub fn add(&mut self, node: N) {
        self.nodes.entry(node).or_insert_with(im_rc::OrdMap::new);
    }

    pub fn link(&mut self, node: N, child: N) -> &mut E {
        self.nodes
            .entry(node)
            .or_insert_with(im_rc::OrdMap::new)
            .entry(child)
            .or_insert_with(Default::default)
    }

    pub fn contains<Q: ?Sized>(&self, k: &Q) -> bool
    where
        N: Borrow<Q>,
        Q: Ord + Eq,
    {
        self.nodes.contains_key(k)
    }

    pub fn edge(&self, from: &N, to: &N) -> Option<&E> {
        self.nodes.get(from)?.get(to)
    }

    pub fn edges(&self, from: &N) -> impl Iterator<Item = (&N, &E)> {
        self.nodes.get(from).into_iter().flat_map(|x| x.iter())
    }

    /// A topological sort of the `Graph`
    pub fn sort(&self) -> Vec<N> {
        let mut ret = Vec::new();
        let mut marks = BTreeSet::new();

        for node in self.nodes.keys() {
            self.sort_inner_visit(node, &mut ret, &mut marks);
        }

        ret
    }

    fn sort_inner_visit(&self, node: &N, dst: &mut Vec<N>, marks: &mut BTreeSet<N>) {
        if !marks.insert(node.clone()) {
            return;
        }

        for child in self.nodes[node].keys() {
            self.sort_inner_visit(child, dst, marks);
        }

        dst.push(node.clone());
    }

    pub fn iter(&self) -> impl Iterator<Item = &N> {
        self.nodes.keys()
    }

    /// Checks if there is a path from `from` to `to`.
    pub fn is_path_from_to<'a>(&'a self, from: &'a N, to: &'a N) -> bool {
        let mut stack = vec![from];
        let mut seen = BTreeSet::new();
        seen.insert(from);
        while let Some(iter) = stack.pop().and_then(|p| self.nodes.get(p)) {
            for p in iter.keys() {
                if p == to {
                    return true;
                }
                if seen.insert(p) {
                    stack.push(p);
                }
            }
        }
        false
    }

    /// Resolves one of the paths from the given dependent package down to
    /// a leaf.
    ///
    /// Each element contains a node along with an edge except the first one.
    /// The representation would look like:
    ///
    /// (Node0,) -> (Node1, Edge01) -> (Node2, Edge12)...
    pub fn path_to_bottom<'a>(&'a self, mut pkg: &'a N) -> Vec<(&'a N, Option<&'a E>)> {
        let mut result = vec![(pkg, None)];
        while let Some(p) = self.nodes.get(pkg).and_then(|p| {
            p.iter()
                // Note that we can have "cycles" introduced through dev-dependency
                // edges, so make sure we don't loop infinitely.
                .find(|&(node, _)| result.iter().all(|p| p.0 != node))
                .map(|(node, edge)| (node, Some(edge)))
        }) {
            result.push(p);
            pkg = p.0;
        }
        result
    }

    /// Resolves one of the paths from the given dependent package up to
    /// the root.
    ///
    /// Each element contains a node along with an edge except the first one.
    /// The representation would look like:
    ///
    /// (Node0,) -> (Node1, Edge01) -> (Node2, Edge12)...
    pub fn path_to_top<'a>(&'a self, mut pkg: &'a N) -> Vec<(&'a N, Option<&'a E>)> {
        // Note that this implementation isn't the most robust per se, we'll
        // likely have to tweak this over time. For now though it works for what
        // it's used for!
        let mut result = vec![(pkg, None)];
        let first_pkg_depending_on = |pkg, res: &[(&N, Option<&E>)]| {
            self.nodes
                .iter()
                .filter(|(_, adjacent)| adjacent.contains_key(pkg))
                // Note that we can have "cycles" introduced through dev-dependency
                // edges, so make sure we don't loop infinitely.
                .find(|&(node, _)| !res.iter().any(|p| p.0 == node))
                .map(|(p, adjacent)| (p, adjacent.get(pkg)))
        };
        while let Some(p) = first_pkg_depending_on(pkg, &result) {
            result.push(p);
            pkg = p.0;
        }
        result
    }
}

impl<N: Eq + Ord + Clone, E: Default + Clone> Default for Graph<N, E> {
    fn default() -> Graph<N, E> {
        Graph::new()
    }
}

impl<N: fmt::Display + Eq + Ord + Clone, E: Clone> fmt::Debug for Graph<N, E> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(fmt, "Graph {{")?;

        for (n, e) in &self.nodes {
            writeln!(fmt, "  - {}", n)?;

            for n in e.keys() {
                writeln!(fmt, "    - {}", n)?;
            }
        }

        write!(fmt, "}}")?;

        Ok(())
    }
}

impl<N: Eq + Ord + Clone, E: Eq + Clone> PartialEq for Graph<N, E> {
    fn eq(&self, other: &Graph<N, E>) -> bool {
        self.nodes.eq(&other.nodes)
    }
}
impl<N: Eq + Ord + Clone, E: Eq + Clone> Eq for Graph<N, E> {}

impl<N: Eq + Ord + Clone, E: Clone> Clone for Graph<N, E> {
    fn clone(&self) -> Graph<N, E> {
        Graph {
            nodes: self.nodes.clone(),
        }
    }
}