1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
use encode::encode_to_slice;
use std::io::{ErrorKind, Result, Write};
use std::{cmp, fmt};
use {encode_config_slice, Config};
pub(crate) const BUF_SIZE: usize = 1024;
/// The most bytes whose encoding will fit in `BUF_SIZE`
const MAX_INPUT_LEN: usize = BUF_SIZE / 4 * 3;
// 3 bytes of input = 4 bytes of base64, always (because we don't allow line wrapping)
const MIN_ENCODE_CHUNK_SIZE: usize = 3;
/// A `Write` implementation that base64 encodes data before delegating to the wrapped writer.
///
/// Because base64 has special handling for the end of the input data (padding, etc), there's a
/// `finish()` method on this type that encodes any leftover input bytes and adds padding if
/// appropriate. It's called automatically when deallocated (see the `Drop` implementation), but
/// any error that occurs when invoking the underlying writer will be suppressed. If you want to
/// handle such errors, call `finish()` yourself.
///
/// # Examples
///
/// ```
/// use std::io::Write;
///
/// // use a vec as the simplest possible `Write` -- in real code this is probably a file, etc.
/// let mut wrapped_writer = Vec::new();
/// {
/// let mut enc = base64::write::EncoderWriter::new(
/// &mut wrapped_writer, base64::STANDARD);
///
/// // handle errors as you normally would
/// enc.write_all(b"asdf").unwrap();
/// // could leave this out to be called by Drop, if you don't care
/// // about handling errors
/// enc.finish().unwrap();
///
/// }
///
/// // base64 was written to the writer
/// assert_eq!(b"YXNkZg==", &wrapped_writer[..]);
///
/// ```
///
/// # Panics
///
/// Calling `write()` after `finish()` is invalid and will panic.
///
/// # Errors
///
/// Base64 encoding itself does not generate errors, but errors from the wrapped writer will be
/// returned as per the contract of `Write`.
///
/// # Performance
///
/// It has some minor performance loss compared to encoding slices (a couple percent).
/// It does not do any heap allocation.
pub struct EncoderWriter<'a, W: 'a + Write> {
config: Config,
/// Where encoded data is written to
w: &'a mut W,
/// Holds a partial chunk, if any, after the last `write()`, so that we may then fill the chunk
/// with the next `write()`, encode it, then proceed with the rest of the input normally.
extra_input: [u8; MIN_ENCODE_CHUNK_SIZE],
/// How much of `extra` is occupied, in `[0, MIN_ENCODE_CHUNK_SIZE]`.
extra_input_occupied_len: usize,
/// Buffer to encode into. May hold leftover encoded bytes from a previous write call that the underlying writer
/// did not write last time.
output: [u8; BUF_SIZE],
/// How much of `output` is occupied with encoded data that couldn't be written last time
output_occupied_len: usize,
/// True iff padding / partial last chunk has been written.
finished: bool,
/// panic safety: don't write again in destructor if writer panicked while we were writing to it
panicked: bool,
}
impl<'a, W: Write> fmt::Debug for EncoderWriter<'a, W> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"extra_input: {:?} extra_input_occupied_len:{:?} output[..5]: {:?} output_occupied_len: {:?}",
self.extra_input,
self.extra_input_occupied_len,
&self.output[0..5],
self.output_occupied_len
)
}
}
impl<'a, W: Write> EncoderWriter<'a, W> {
/// Create a new encoder that will write to the provided delegate writer `w`.
pub fn new(w: &'a mut W, config: Config) -> EncoderWriter<'a, W> {
EncoderWriter {
config,
w,
extra_input: [0u8; MIN_ENCODE_CHUNK_SIZE],
extra_input_occupied_len: 0,
output: [0u8; BUF_SIZE],
output_occupied_len: 0,
finished: false,
panicked: false,
}
}
/// Encode all remaining buffered data and write it, including any trailing incomplete input
/// triples and associated padding.
///
/// Once this succeeds, no further writes can be performed, as that would produce invalid
/// base64.
///
/// This may write to the delegate writer multiple times if the delegate writer does not accept all input provided
/// to its `write` each invocation.
///
/// # Errors
///
/// The first error that is not of [`ErrorKind::Interrupted`] will be returned.
pub fn finish(&mut self) -> Result<()> {
if self.finished {
return Ok(());
};
self.write_all_encoded_output()?;
if self.extra_input_occupied_len > 0 {
let encoded_len = encode_config_slice(
&self.extra_input[..self.extra_input_occupied_len],
self.config,
&mut self.output[..],
);
self.output_occupied_len = encoded_len;
self.write_all_encoded_output()?;
// write succeeded, do not write the encoding of extra again if finish() is retried
self.extra_input_occupied_len = 0;
}
self.finished = true;
Ok(())
}
/// Write as much of the encoded output to the delegate writer as it will accept, and store the
/// leftovers to be attempted at the next write() call. Updates `self.output_occupied_len`.
///
/// # Errors
///
/// Errors from the delegate writer are returned. In the case of an error,
/// `self.output_occupied_len` will not be updated, as errors from `write` are specified to mean
/// that no write took place.
fn write_to_delegate(&mut self, current_output_len: usize) -> Result<()> {
self.panicked = true;
let res = self.w.write(&self.output[..current_output_len]);
self.panicked = false;
return res.map(|consumed| {
debug_assert!(consumed <= current_output_len);
if consumed < current_output_len {
self.output_occupied_len = current_output_len.checked_sub(consumed).unwrap();
// If we're blocking on I/O, the minor inefficiency of copying bytes to the
// start of the buffer is the least of our concerns...
// Rotate moves more than we need to, but copy_within isn't stabilized yet.
self.output.rotate_left(consumed);
} else {
self.output_occupied_len = 0;
}
()
});
}
/// Write all buffered encoded output. If this returns `Ok`, `self.output_occupied_len` is `0`.
///
/// This is basically write_all for the remaining buffered data but without the undesirable
/// abort-on-`Ok(0)` behavior.
///
/// # Errors
///
/// Any error emitted by the delegate writer abort the write loop and is returned, unless it's
/// `Interrupted`, in which case the error is ignored and writes will continue.
fn write_all_encoded_output(&mut self) -> Result<()> {
while self.output_occupied_len > 0 {
let remaining_len = self.output_occupied_len;
match self.write_to_delegate(remaining_len) {
// try again on interrupts ala write_all
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
// other errors return
Err(e) => return Err(e),
// success no-ops because remaining length is already updated
Ok(_) => {}
};
}
debug_assert_eq!(0, self.output_occupied_len);
Ok(())
}
}
impl<'a, W: Write> Write for EncoderWriter<'a, W> {
/// Encode input and then write to the delegate writer.
///
/// Under non-error circumstances, this returns `Ok` with the value being the number of bytes
/// of `input` consumed. The value may be `0`, which interacts poorly with `write_all`, which
/// interprets `Ok(0)` as an error, despite it being allowed by the contract of `write`. See
/// https://github.com/rust-lang/rust/issues/56889 for more on that.
///
/// If the previous call to `write` provided more (encoded) data than the delegate writer could
/// accept in a single call to its `write`, the remaining data is buffered. As long as buffered
/// data is present, subsequent calls to `write` will try to write the remaining buffered data
/// to the delegate and return either `Ok(0)` -- and therefore not consume any of `input` -- or
/// an error.
///
/// # Errors
///
/// Any errors emitted by the delegate writer are returned.
fn write(&mut self, input: &[u8]) -> Result<usize> {
if self.finished {
panic!("Cannot write more after calling finish()");
}
if input.is_empty() {
return Ok(0);
}
// The contract of `Write::write` places some constraints on this implementation:
// - a call to `write()` represents at most one call to a wrapped `Write`, so we can't
// iterate over the input and encode multiple chunks.
// - Errors mean that "no bytes were written to this writer", so we need to reset the
// internal state to what it was before the error occurred
// before reading any input, write any leftover encoded output from last time
if self.output_occupied_len > 0 {
let current_len = self.output_occupied_len;
return self.write_to_delegate(current_len)
// did not read any input
.map(|_| 0)
}
debug_assert_eq!(0, self.output_occupied_len);
// how many bytes, if any, were read into `extra` to create a triple to encode
let mut extra_input_read_len = 0;
let mut input = input;
let orig_extra_len = self.extra_input_occupied_len;
let mut encoded_size = 0;
// always a multiple of MIN_ENCODE_CHUNK_SIZE
let mut max_input_len = MAX_INPUT_LEN;
// process leftover un-encoded input from last write
if self.extra_input_occupied_len > 0 {
debug_assert!(self.extra_input_occupied_len < 3);
if input.len() + self.extra_input_occupied_len >= MIN_ENCODE_CHUNK_SIZE {
// Fill up `extra`, encode that into `output`, and consume as much of the rest of
// `input` as possible.
// We could write just the encoding of `extra` by itself but then we'd have to
// return after writing only 4 bytes, which is inefficient if the underlying writer
// would make a syscall.
extra_input_read_len = MIN_ENCODE_CHUNK_SIZE - self.extra_input_occupied_len;
debug_assert!(extra_input_read_len > 0);
// overwrite only bytes that weren't already used. If we need to rollback extra_len
// (when the subsequent write errors), the old leading bytes will still be there.
self.extra_input[self.extra_input_occupied_len..MIN_ENCODE_CHUNK_SIZE]
.copy_from_slice(&input[0..extra_input_read_len]);
let len = encode_to_slice(
&self.extra_input[0..MIN_ENCODE_CHUNK_SIZE],
&mut self.output[..],
self.config.char_set.encode_table(),
);
debug_assert_eq!(4, len);
input = &input[extra_input_read_len..];
// consider extra to be used up, since we encoded it
self.extra_input_occupied_len = 0;
// don't clobber where we just encoded to
encoded_size = 4;
// and don't read more than can be encoded
max_input_len = MAX_INPUT_LEN - MIN_ENCODE_CHUNK_SIZE;
// fall through to normal encoding
} else {
// `extra` and `input` are non empty, but `|extra| + |input| < 3`, so there must be
// 1 byte in each.
debug_assert_eq!(1, input.len());
debug_assert_eq!(1, self.extra_input_occupied_len);
self.extra_input[self.extra_input_occupied_len] = input[0];
self.extra_input_occupied_len += 1;
return Ok(1);
};
} else if input.len() < MIN_ENCODE_CHUNK_SIZE {
// `extra` is empty, and `input` fits inside it
self.extra_input[0..input.len()].copy_from_slice(input);
self.extra_input_occupied_len = input.len();
return Ok(input.len());
};
// either 0 or 1 complete chunks encoded from extra
debug_assert!(encoded_size == 0 || encoded_size == 4);
debug_assert!(
// didn't encode extra input
MAX_INPUT_LEN == max_input_len
// encoded one triple
|| MAX_INPUT_LEN == max_input_len + MIN_ENCODE_CHUNK_SIZE
);
// encode complete triples only
let input_complete_chunks_len = input.len() - (input.len() % MIN_ENCODE_CHUNK_SIZE);
let input_chunks_to_encode_len = cmp::min(input_complete_chunks_len, max_input_len);
debug_assert_eq!(0, max_input_len % MIN_ENCODE_CHUNK_SIZE);
debug_assert_eq!(0, input_chunks_to_encode_len % MIN_ENCODE_CHUNK_SIZE);
encoded_size += encode_to_slice(
&input[..(input_chunks_to_encode_len)],
&mut self.output[encoded_size..],
self.config.char_set.encode_table(),
);
// not updating `self.output_occupied_len` here because if the below write fails, it should
// "never take place" -- the buffer contents we encoded are ignored and perhaps retried
// later, if the consumer chooses.
self.write_to_delegate(encoded_size)
// no matter whether we wrote the full encoded buffer or not, we consumed the same
// input
.map(|_| extra_input_read_len + input_chunks_to_encode_len)
.map_err( |e| {
// in case we filled and encoded `extra`, reset extra_len
self.extra_input_occupied_len = orig_extra_len;
e
})
}
/// Because this is usually treated as OK to call multiple times, it will *not* flush any
/// incomplete chunks of input or write padding.
fn flush(&mut self) -> Result<()> {
self.write_all_encoded_output()?;
self.w.flush()
}
}
impl<'a, W: Write> Drop for EncoderWriter<'a, W> {
fn drop(&mut self) {
if !self.panicked {
// like `BufWriter`, ignore errors during drop
let _ = self.finish();
}
}
}