1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
//! The global epoch
//!
//! The last bit in this number is unused and is always zero. Every so often the global epoch is
//! incremented, i.e. we say it "advances". A pinned participant may advance the global epoch only
//! if all currently pinned participants have been pinned in the current epoch.
//!
//! If an object became garbage in some epoch, then we can be sure that after two advancements no
//! participant will hold a reference to it. That is the crux of safe memory reclamation.
use core::sync::atomic::{AtomicUsize, Ordering};
/// An epoch that can be marked as pinned or unpinned.
///
/// Internally, the epoch is represented as an integer that wraps around at some unspecified point
/// and a flag that represents whether it is pinned or unpinned.
#[derive(Copy, Clone, Default, Debug, Eq, PartialEq)]
pub struct Epoch {
/// The least significant bit is set if pinned. The rest of the bits hold the epoch.
data: usize,
}
impl Epoch {
/// Returns the starting epoch in unpinned state.
#[inline]
pub fn starting() -> Self {
Self::default()
}
/// Returns the number of epochs `self` is ahead of `rhs`.
///
/// Internally, epochs are represented as numbers in the range `(isize::MIN / 2) .. (isize::MAX
/// / 2)`, so the returned distance will be in the same interval.
pub fn wrapping_sub(self, rhs: Self) -> isize {
// The result is the same with `(self.data & !1).wrapping_sub(rhs.data & !1) as isize >> 1`,
// because the possible difference of LSB in `(self.data & !1).wrapping_sub(rhs.data & !1)`
// will be ignored in the shift operation.
self.data.wrapping_sub(rhs.data & !1) as isize >> 1
}
/// Returns `true` if the epoch is marked as pinned.
#[inline]
pub fn is_pinned(self) -> bool {
(self.data & 1) == 1
}
/// Returns the same epoch, but marked as pinned.
#[inline]
pub fn pinned(self) -> Epoch {
Epoch {
data: self.data | 1,
}
}
/// Returns the same epoch, but marked as unpinned.
#[inline]
pub fn unpinned(self) -> Epoch {
Epoch {
data: self.data & !1,
}
}
/// Returns the successor epoch.
///
/// The returned epoch will be marked as pinned only if the previous one was as well.
#[inline]
pub fn successor(self) -> Epoch {
Epoch {
data: self.data.wrapping_add(2),
}
}
}
/// An atomic value that holds an `Epoch`.
#[derive(Default, Debug)]
pub struct AtomicEpoch {
/// Since `Epoch` is just a wrapper around `usize`, an `AtomicEpoch` is similarly represented
/// using an `AtomicUsize`.
data: AtomicUsize,
}
impl AtomicEpoch {
/// Creates a new atomic epoch.
#[inline]
pub fn new(epoch: Epoch) -> Self {
let data = AtomicUsize::new(epoch.data);
AtomicEpoch { data }
}
/// Loads a value from the atomic epoch.
#[inline]
pub fn load(&self, ord: Ordering) -> Epoch {
Epoch {
data: self.data.load(ord),
}
}
/// Stores a value into the atomic epoch.
#[inline]
pub fn store(&self, epoch: Epoch, ord: Ordering) {
self.data.store(epoch.data, ord);
}
/// Stores a value into the atomic epoch if the current value is the same as `current`.
///
/// The return value is always the previous value. If it is equal to `current`, then the value
/// is updated.
///
/// The `Ordering` argument describes the memory ordering of this operation.
#[inline]
pub fn compare_and_swap(&self, current: Epoch, new: Epoch, ord: Ordering) -> Epoch {
let data = self.data.compare_and_swap(current.data, new.data, ord);
Epoch { data }
}
}