1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
//! Lock-free intrusive linked list.
//!
//! Ideas from Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets. SPAA
//! 2002. http://dl.acm.org/citation.cfm?id=564870.564881
use core::marker::PhantomData;
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use {unprotected, Atomic, Guard, Shared};
/// An entry in a linked list.
///
/// An Entry is accessed from multiple threads, so it would be beneficial to put it in a different
/// cache-line than thread-local data in terms of performance.
#[derive(Debug)]
pub struct Entry {
/// The next entry in the linked list.
/// If the tag is 1, this entry is marked as deleted.
next: Atomic<Entry>,
}
/// Implementing this trait asserts that the type `T` can be used as an element in the intrusive
/// linked list defined in this module. `T` has to contain (or otherwise be linked to) an instance
/// of `Entry`.
///
/// # Example
///
/// ```ignore
/// struct A {
/// entry: Entry,
/// data: usize,
/// }
///
/// impl IsElement<A> for A {
/// fn entry_of(a: &A) -> &Entry {
/// let entry_ptr = ((a as usize) + offset_of!(A, entry)) as *const Entry;
/// unsafe { &*entry_ptr }
/// }
///
/// unsafe fn element_of(entry: &Entry) -> &T {
/// let elem_ptr = ((entry as usize) - offset_of!(A, entry)) as *const T;
/// &*elem_ptr
/// }
///
/// unsafe fn finalize(entry: &Entry, guard: &Guard) {
/// guard.defer_destroy(Shared::from(Self::element_of(entry) as *const _));
/// }
/// }
/// ```
///
/// This trait is implemented on a type separate from `T` (although it can be just `T`), because
/// one type might be placeable into multiple lists, in which case it would require multiple
/// implementations of `IsElement`. In such cases, each struct implementing `IsElement<T>`
/// represents a distinct `Entry` in `T`.
///
/// For example, we can insert the following struct into two lists using `entry1` for one
/// and `entry2` for the other:
///
/// ```ignore
/// struct B {
/// entry1: Entry,
/// entry2: Entry,
/// data: usize,
/// }
/// ```
///
pub trait IsElement<T> {
/// Returns a reference to this element's `Entry`.
fn entry_of(&T) -> &Entry;
/// Given a reference to an element's entry, returns that element.
///
/// ```ignore
/// let elem = ListElement::new();
/// assert_eq!(elem.entry_of(),
/// unsafe { ListElement::element_of(elem.entry_of()) } );
/// ```
///
/// # Safety
///
/// The caller has to guarantee that the `Entry` is called with was retrieved from an instance
/// of the element type (`T`).
unsafe fn element_of(&Entry) -> &T;
/// The function that is called when an entry is unlinked from list.
///
/// # Safety
///
/// The caller has to guarantee that the `Entry` is called with was retrieved from an instance
/// of the element type (`T`).
unsafe fn finalize(&Entry, &Guard);
}
/// A lock-free, intrusive linked list of type `T`.
#[derive(Debug)]
pub struct List<T, C: IsElement<T> = T> {
/// The head of the linked list.
head: Atomic<Entry>,
/// The phantom data for using `T` and `C`.
_marker: PhantomData<(T, C)>,
}
/// An iterator used for retrieving values from the list.
pub struct Iter<'g, T: 'g, C: IsElement<T>> {
/// The guard that protects the iteration.
guard: &'g Guard,
/// Pointer from the predecessor to the current entry.
pred: &'g Atomic<Entry>,
/// The current entry.
curr: Shared<'g, Entry>,
/// The list head, needed for restarting iteration.
head: &'g Atomic<Entry>,
/// Logically, we store a borrow of an instance of `T` and
/// use the type information from `C`.
_marker: PhantomData<(&'g T, C)>,
}
/// An error that occurs during iteration over the list.
#[derive(PartialEq, Debug)]
pub enum IterError {
/// A concurrent thread modified the state of the list at the same place that this iterator
/// was inspecting. Subsequent iteration will restart from the beginning of the list.
Stalled,
}
impl Default for Entry {
/// Returns the empty entry.
fn default() -> Self {
Self {
next: Atomic::null(),
}
}
}
impl Entry {
/// Marks this entry as deleted, deferring the actual deallocation to a later iteration.
///
/// # Safety
///
/// The entry should be a member of a linked list, and it should not have been deleted.
/// It should be safe to call `C::finalize` on the entry after the `guard` is dropped, where `C`
/// is the associated helper for the linked list.
pub unsafe fn delete(&self, guard: &Guard) {
self.next.fetch_or(1, Release, guard);
}
}
impl<T, C: IsElement<T>> List<T, C> {
/// Returns a new, empty linked list.
pub fn new() -> Self {
Self {
head: Atomic::null(),
_marker: PhantomData,
}
}
/// Inserts `entry` into the head of the list.
///
/// # Safety
///
/// You should guarantee that:
///
/// - `container` is not null
/// - `container` is immovable, e.g. inside an `Owned`
/// - the same `Entry` is not inserted more than once
/// - the inserted object will be removed before the list is dropped
pub unsafe fn insert<'g>(&'g self, container: Shared<'g, T>, guard: &'g Guard) {
// Insert right after head, i.e. at the beginning of the list.
let to = &self.head;
// Get the intrusively stored Entry of the new element to insert.
let entry: &Entry = C::entry_of(container.deref());
// Make a Shared ptr to that Entry.
let entry_ptr = Shared::from(entry as *const _);
// Read the current successor of where we want to insert.
let mut next = to.load(Relaxed, guard);
loop {
// Set the Entry of the to-be-inserted element to point to the previous successor of
// `to`.
entry.next.store(next, Relaxed);
match to.compare_and_set_weak(next, entry_ptr, Release, guard) {
Ok(_) => break,
// We lost the race or weak CAS failed spuriously. Update the successor and try
// again.
Err(err) => next = err.current,
}
}
}
/// Returns an iterator over all objects.
///
/// # Caveat
///
/// Every object that is inserted at the moment this function is called and persists at least
/// until the end of iteration will be returned. Since this iterator traverses a lock-free
/// linked list that may be concurrently modified, some additional caveats apply:
///
/// 1. If a new object is inserted during iteration, it may or may not be returned.
/// 2. If an object is deleted during iteration, it may or may not be returned.
/// 3. The iteration may be aborted when it lost in a race condition. In this case, the winning
/// thread will continue to iterate over the same list.
pub fn iter<'g>(&'g self, guard: &'g Guard) -> Iter<'g, T, C> {
Iter {
guard,
pred: &self.head,
curr: self.head.load(Acquire, guard),
head: &self.head,
_marker: PhantomData,
}
}
}
impl<T, C: IsElement<T>> Drop for List<T, C> {
fn drop(&mut self) {
unsafe {
let guard = &unprotected();
let mut curr = self.head.load(Relaxed, guard);
while let Some(c) = curr.as_ref() {
let succ = c.next.load(Relaxed, guard);
// Verify that all elements have been removed from the list.
assert_eq!(succ.tag(), 1);
C::finalize(curr.deref(), guard);
curr = succ;
}
}
}
}
impl<'g, T: 'g, C: IsElement<T>> Iterator for Iter<'g, T, C> {
type Item = Result<&'g T, IterError>;
fn next(&mut self) -> Option<Self::Item> {
while let Some(c) = unsafe { self.curr.as_ref() } {
let succ = c.next.load(Acquire, self.guard);
if succ.tag() == 1 {
// This entry was removed. Try unlinking it from the list.
let succ = succ.with_tag(0);
// The tag should always be zero, because removing a node after a logically deleted
// node leaves the list in an invalid state.
debug_assert!(self.curr.tag() == 0);
// Try to unlink `curr` from the list, and get the new value of `self.pred`.
let succ = match self
.pred
.compare_and_set(self.curr, succ, Acquire, self.guard)
{
Ok(_) => {
// We succeeded in unlinking `curr`, so we have to schedule
// deallocation. Deferred drop is okay, because `list.delete()` can only be
// called if `T: 'static`.
unsafe {
C::finalize(self.curr.deref(), self.guard);
}
// `succ` is the new value of `self.pred`.
succ
}
Err(e) => {
// `e.current` is the current value of `self.pred`.
e.current
}
};
// If the predecessor node is already marked as deleted, we need to restart from
// `head`.
if succ.tag() != 0 {
self.pred = self.head;
self.curr = self.head.load(Acquire, self.guard);
return Some(Err(IterError::Stalled));
}
// Move over the removed by only advancing `curr`, not `pred`.
self.curr = succ;
continue;
}
// Move one step forward.
self.pred = &c.next;
self.curr = succ;
return Some(Ok(unsafe { C::element_of(c) }));
}
// We reached the end of the list.
None
}
}
#[cfg(test)]
mod tests {
use super::*;
use crossbeam_utils::thread;
use std::sync::Barrier;
use {Collector, Owned};
impl IsElement<Entry> for Entry {
fn entry_of(entry: &Entry) -> &Entry {
entry
}
unsafe fn element_of(entry: &Entry) -> &Entry {
entry
}
unsafe fn finalize(entry: &Entry, guard: &Guard) {
guard.defer_destroy(Shared::from(Self::element_of(entry) as *const _));
}
}
/// Checks whether the list retains inserted elements
/// and returns them in the correct order.
#[test]
fn insert() {
let collector = Collector::new();
let handle = collector.register();
let guard = handle.pin();
let l: List<Entry> = List::new();
let e1 = Owned::new(Entry::default()).into_shared(&guard);
let e2 = Owned::new(Entry::default()).into_shared(&guard);
let e3 = Owned::new(Entry::default()).into_shared(&guard);
unsafe {
l.insert(e1, &guard);
l.insert(e2, &guard);
l.insert(e3, &guard);
}
let mut iter = l.iter(&guard);
let maybe_e3 = iter.next();
assert!(maybe_e3.is_some());
assert!(maybe_e3.unwrap().unwrap() as *const Entry == e3.as_raw());
let maybe_e2 = iter.next();
assert!(maybe_e2.is_some());
assert!(maybe_e2.unwrap().unwrap() as *const Entry == e2.as_raw());
let maybe_e1 = iter.next();
assert!(maybe_e1.is_some());
assert!(maybe_e1.unwrap().unwrap() as *const Entry == e1.as_raw());
assert!(iter.next().is_none());
unsafe {
e1.as_ref().unwrap().delete(&guard);
e2.as_ref().unwrap().delete(&guard);
e3.as_ref().unwrap().delete(&guard);
}
}
/// Checks whether elements can be removed from the list and whether
/// the correct elements are removed.
#[test]
fn delete() {
let collector = Collector::new();
let handle = collector.register();
let guard = handle.pin();
let l: List<Entry> = List::new();
let e1 = Owned::new(Entry::default()).into_shared(&guard);
let e2 = Owned::new(Entry::default()).into_shared(&guard);
let e3 = Owned::new(Entry::default()).into_shared(&guard);
unsafe {
l.insert(e1, &guard);
l.insert(e2, &guard);
l.insert(e3, &guard);
e2.as_ref().unwrap().delete(&guard);
}
let mut iter = l.iter(&guard);
let maybe_e3 = iter.next();
assert!(maybe_e3.is_some());
assert!(maybe_e3.unwrap().unwrap() as *const Entry == e3.as_raw());
let maybe_e1 = iter.next();
assert!(maybe_e1.is_some());
assert!(maybe_e1.unwrap().unwrap() as *const Entry == e1.as_raw());
assert!(iter.next().is_none());
unsafe {
e1.as_ref().unwrap().delete(&guard);
e3.as_ref().unwrap().delete(&guard);
}
let mut iter = l.iter(&guard);
assert!(iter.next().is_none());
}
const THREADS: usize = 8;
const ITERS: usize = 512;
/// Contends the list on insert and delete operations to make sure they can run concurrently.
#[test]
fn insert_delete_multi() {
let collector = Collector::new();
let l: List<Entry> = List::new();
let b = Barrier::new(THREADS);
thread::scope(|s| {
for _ in 0..THREADS {
s.spawn(|_| {
b.wait();
let handle = collector.register();
let guard: Guard = handle.pin();
let mut v = Vec::with_capacity(ITERS);
for _ in 0..ITERS {
let e = Owned::new(Entry::default()).into_shared(&guard);
v.push(e);
unsafe {
l.insert(e, &guard);
}
}
for e in v {
unsafe {
e.as_ref().unwrap().delete(&guard);
}
}
});
}
})
.unwrap();
let handle = collector.register();
let guard = handle.pin();
let mut iter = l.iter(&guard);
assert!(iter.next().is_none());
}
/// Contends the list on iteration to make sure that it can be iterated over concurrently.
#[test]
fn iter_multi() {
let collector = Collector::new();
let l: List<Entry> = List::new();
let b = Barrier::new(THREADS);
thread::scope(|s| {
for _ in 0..THREADS {
s.spawn(|_| {
b.wait();
let handle = collector.register();
let guard: Guard = handle.pin();
let mut v = Vec::with_capacity(ITERS);
for _ in 0..ITERS {
let e = Owned::new(Entry::default()).into_shared(&guard);
v.push(e);
unsafe {
l.insert(e, &guard);
}
}
let mut iter = l.iter(&guard);
for _ in 0..ITERS {
assert!(iter.next().is_some());
}
for e in v {
unsafe {
e.as_ref().unwrap().delete(&guard);
}
}
});
}
})
.unwrap();
let handle = collector.register();
let guard = handle.pin();
let mut iter = l.iter(&guard);
assert!(iter.next().is_none());
}
}