1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
use super::{
nonce::{self, Iv},
shift, Block, Direction, BLOCK_LEN,
};
use crate::{bits::BitLength, cpu, endian::*, error, polyfill};
use libc::size_t;
pub(crate) struct Key {
inner: AES_KEY,
cpu_features: cpu::Features,
}
impl Key {
#[inline]
pub fn new(
bytes: &[u8], variant: Variant, cpu_features: cpu::Features,
) -> Result<Self, error::Unspecified> {
let key_bits = match variant {
Variant::AES_128 => BitLength::from_usize_bits(128),
Variant::AES_256 => BitLength::from_usize_bits(256),
};
if BitLength::from_usize_bytes(bytes.len())? != key_bits {
return Err(error::Unspecified);
}
let mut key = AES_KEY {
rd_key: [0u32; 4 * (MAX_ROUNDS + 1)],
rounds: 0,
};
match detect_implementation(cpu_features) {
Implementation::HWAES => {
extern "C" {
fn GFp_aes_hw_set_encrypt_key(
user_key: *const u8, bits: libc::c_uint, key: &mut AES_KEY,
) -> ZeroMeansSuccess;
}
Result::from(unsafe {
GFp_aes_hw_set_encrypt_key(
bytes.as_ptr(),
key_bits.as_usize_bits() as libc::c_uint,
&mut key,
)
})?;
},
#[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
Implementation::VPAES => {
extern "C" {
fn GFp_vpaes_set_encrypt_key(
user_key: *const u8, bits: libc::c_uint, key: &mut AES_KEY,
) -> ZeroMeansSuccess;
}
Result::from(unsafe {
GFp_vpaes_set_encrypt_key(
bytes.as_ptr(),
key_bits.as_usize_bits() as libc::c_uint,
&mut key,
)
})?;
},
_ => {
extern "C" {
fn GFp_aes_nohw_set_encrypt_key(
user_key: *const u8, bits: libc::c_uint, key: &mut AES_KEY,
) -> ZeroMeansSuccess;
}
Result::from(unsafe {
GFp_aes_nohw_set_encrypt_key(
bytes.as_ptr(),
key_bits.as_usize_bits() as libc::c_uint,
&mut key,
)
})?;
},
};
Ok(Key {
inner: key,
cpu_features,
})
}
#[inline]
pub fn encrypt_block(&self, mut a: Block) -> Block {
let aliasing_const: *const Block = &a;
let aliasing_mut: *mut Block = &mut a;
match detect_implementation(self.cpu_features) {
Implementation::HWAES => {
extern "C" {
fn GFp_aes_hw_encrypt(a: *const Block, r: *mut Block, key: &AES_KEY);
}
unsafe {
GFp_aes_hw_encrypt(aliasing_const, aliasing_mut, &self.inner);
}
},
#[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
Implementation::VPAES => {
extern "C" {
fn GFp_vpaes_encrypt(a: *const Block, r: *mut Block, key: &AES_KEY);
}
unsafe {
GFp_vpaes_encrypt(aliasing_const, aliasing_mut, &self.inner);
}
},
_ => {
extern "C" {
fn GFp_aes_nohw_encrypt(a: *const Block, r: *mut Block, key: &AES_KEY);
}
unsafe {
GFp_aes_nohw_encrypt(aliasing_const, aliasing_mut, &self.inner);
}
},
}
a
}
#[inline]
pub fn encrypt_iv_xor_block(&self, iv: Iv, input: Block) -> Block {
let mut output = self.encrypt_block(iv.into_block_less_safe());
output.bitxor_assign(input);
output
}
#[inline]
pub(super) fn ctr32_encrypt_blocks(
&self, in_out: &mut [u8], direction: Direction, ctr: &mut Counter,
) {
let output: *mut u8 = in_out.as_mut_ptr();
let in_prefix_len = match direction {
Direction::Opening { in_prefix_len } => in_prefix_len,
Direction::Sealing => 0,
};
let input: *const u8 = in_out[in_prefix_len..].as_ptr();
let in_out_len = in_out.len().checked_sub(in_prefix_len).unwrap();
assert_eq!(in_out_len % BLOCK_LEN, 0);
let blocks = in_out_len / BLOCK_LEN;
let blocks_u32 = blocks as u32;
assert_eq!(blocks, polyfill::usize_from_u32(blocks_u32));
match detect_implementation(self.cpu_features) {
Implementation::HWAES => {
extern "C" {
fn GFp_aes_hw_ctr32_encrypt_blocks(
input: *const u8, output: *mut u8, blocks: size_t, key: &AES_KEY,
ivec: &Counter,
);
}
unsafe {
GFp_aes_hw_ctr32_encrypt_blocks(input, output, blocks, &self.inner, ctr);
}
ctr.increment_by_less_safe(blocks_u32);
},
#[cfg(target_arch = "arm")]
Implementation::BSAES => {
extern "C" {
fn GFp_bsaes_ctr32_encrypt_blocks(
input: *const u8, output: *mut u8, blocks: size_t, key: &AES_KEY,
ivec: &Counter,
);
}
unsafe {
GFp_bsaes_ctr32_encrypt_blocks(input, output, blocks, &self.inner, ctr);
}
ctr.increment_by_less_safe(blocks_u32);
},
_ => {
shift::shift_full_blocks(in_out, in_prefix_len, |input| {
self.encrypt_iv_xor_block(ctr.increment(), Block::from(input))
});
},
}
}
pub fn new_mask(&self, sample: Block) -> [u8; 5] {
let block = self.encrypt_block(sample);
let mut out: [u8; 5] = [0; 5];
out.copy_from_slice(&block.as_ref()[..5]);
out
}
#[cfg(target_arch = "x86_64")]
#[must_use]
pub fn is_aes_hw(&self) -> bool {
match detect_implementation(self.cpu_features) {
Implementation::HWAES => true,
_ => false,
}
}
#[cfg(target_arch = "x86_64")]
#[must_use]
pub(super) fn inner_less_safe(&self) -> &AES_KEY { &self.inner }
}
#[repr(C)]
pub(super) struct AES_KEY {
pub rd_key: [u32; 4 * (MAX_ROUNDS + 1)],
pub rounds: libc::c_uint,
}
const MAX_ROUNDS: usize = 14;
pub enum Variant {
AES_128,
AES_256,
}
pub type Counter = nonce::Counter<BigEndian<u32>>;
#[repr(C)]
#[derive(Clone, Copy)]
pub enum Implementation {
HWAES = 1,
#[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
VPAES = 2,
#[cfg(target_arch = "arm")]
BSAES = 3,
Fallback = 4,
}
fn detect_implementation(cpu_features: cpu::Features) -> Implementation {
if cpu::intel::AES.available(cpu_features) || cpu::arm::AES.available(cpu_features) {
return Implementation::HWAES;
}
#[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
{
if cpu::intel::SSSE3.available(cpu_features) {
return Implementation::VPAES;
}
}
#[cfg(target_arch = "arm")]
{
if cpu::arm::NEON.available(cpu_features) {
return Implementation::BSAES;
}
}
Implementation::Fallback
}
#[must_use]
#[repr(transparent)]
pub struct ZeroMeansSuccess(libc::c_int);
impl From<ZeroMeansSuccess> for Result<(), error::Unspecified> {
fn from(ZeroMeansSuccess(value): ZeroMeansSuccess) -> Self {
if value == 0 {
Ok(())
} else {
Err(error::Unspecified)
}
}
}
#[cfg(test)]
mod tests {
use super::{super::BLOCK_LEN, *};
use crate::{polyfill::convert::*, test};
#[test]
pub fn test_aes() {
test::run(test_file!("aes_tests.txt"), |section, test_case| {
assert_eq!(section, "");
let key = consume_key(test_case, "Key");
let input = test_case.consume_bytes("Input");
let input: &[u8; BLOCK_LEN] = input.as_slice().try_into_()?;
let expected_output = test_case.consume_bytes("Output");
let block = Block::from(input);
let output = key.encrypt_block(block);
assert_eq!(output.as_ref(), &expected_output[..]);
Ok(())
})
}
fn consume_key(test_case: &mut test::TestCase, name: &str) -> Key {
let key = test_case.consume_bytes(name);
let variant = match key.len() {
16 => Variant::AES_128,
32 => Variant::AES_256,
_ => unreachable!(),
};
Key::new(&key[..], variant, cpu::features()).unwrap()
}
}