1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#![allow(deprecated)]
//! Execute many tasks concurrently on the current thread.
//!
//! [`CurrentThread`] is an executor that keeps tasks on the same thread that
//! they were spawned from. This allows it to execute futures that are not
//! `Send`.
//!
//! A single [`CurrentThread`] instance is able to efficiently manage a large
//! number of tasks and will attempt to schedule all tasks fairly.
//!
//! All tasks that are being managed by a [`CurrentThread`] executor are able to
//! spawn additional tasks by calling [`spawn`]. This function only works from
//! within the context of a running [`CurrentThread`] instance.
//!
//! The easiest way to start a new [`CurrentThread`] executor is to call
//! [`block_on_all`] with an initial task to seed the executor.
//!
//! For example:
//!
//! ```
//! # extern crate tokio;
//! # extern crate futures;
//! # use tokio::executor::current_thread;
//! use futures::future::lazy;
//!
//! // Calling execute here results in a panic
//! // current_thread::spawn(my_future);
//!
//! # pub fn main() {
//! current_thread::block_on_all(lazy(|| {
//! // The execution context is setup, futures may be executed.
//! current_thread::spawn(lazy(|| {
//! println!("called from the current thread executor");
//! Ok(())
//! }));
//!
//! Ok::<_, ()>(())
//! }));
//! # }
//! ```
//!
//! The `block_on_all` function will block the current thread until **all**
//! tasks that have been spawned onto the [`CurrentThread`] instance have
//! completed.
//!
//! More fine-grain control can be achieved by using [`CurrentThread`] directly.
//!
//! ```
//! # extern crate tokio;
//! # extern crate futures;
//! # use tokio::executor::current_thread::CurrentThread;
//! use futures::future::{lazy, empty};
//! use std::time::Duration;
//!
//! // Calling execute here results in a panic
//! // current_thread::spawn(my_future);
//!
//! # pub fn main() {
//! let mut current_thread = CurrentThread::new();
//!
//! // Spawn a task, the task is not executed yet.
//! current_thread.spawn(lazy(|| {
//! println!("Spawning a task");
//! Ok(())
//! }));
//!
//! // Spawn a task that never completes
//! current_thread.spawn(empty());
//!
//! // Run the executor, but only until the provided future completes. This
//! // provides the opportunity to start executing previously spawned tasks.
//! let res = current_thread.block_on(lazy(|| {
//! Ok::<_, ()>("Hello")
//! })).unwrap();
//!
//! // Now, run the executor for *at most* 1 second. Since a task was spawned
//! // that never completes, this function will return with an error.
//! current_thread.run_timeout(Duration::from_secs(1)).unwrap_err();
//! # }
//! ```
//!
//! # Execution model
//!
//! Internally, [`CurrentThread`] maintains a queue. When one of its tasks is
//! notified, the task gets added to the queue. The executor will pop tasks from
//! the queue and call [`Future::poll`]. If the task gets notified while it is
//! being executed, it won't get re-executed until all other tasks currently in
//! the queue get polled.
//!
//! Before the task is polled, a thread-local variable referencing the current
//! [`CurrentThread`] instance is set. This enables [`spawn`] to spawn new tasks
//! onto the same executor without having to thread through a handle value.
//!
//! If the [`CurrentThread`] instance still has uncompleted tasks, but none of
//! these tasks are ready to be polled, the current thread is put to sleep. When
//! a task is notified, the thread is woken up and processing resumes.
//!
//! All tasks managed by [`CurrentThread`] remain on the current thread. When a
//! task completes, it is dropped.
//!
//! [`spawn`]: fn.spawn.html
//! [`block_on_all`]: fn.block_on_all.html
//! [`CurrentThread`]: struct.CurrentThread.html
//! [`Future::poll`]: https://docs.rs/futures/0.1/futures/future/trait.Future.html#tymethod.poll
pub use tokio_current_thread::{
BlockError,
CurrentThread,
Entered,
Handle,
RunError,
RunTimeoutError,
TaskExecutor,
Turn,
TurnError,
block_on_all,
spawn,
};
use std::cell::Cell;
use std::marker::PhantomData;
use futures::future::{self};
#[deprecated(since = "0.1.2", note = "use block_on_all instead")]
#[doc(hidden)]
#[derive(Debug)]
pub struct Context<'a> {
cancel: Cell<bool>,
_p: PhantomData<&'a ()>,
}
impl<'a> Context<'a> {
/// Cancels *all* executing futures.
pub fn cancel_all_spawned(&self) {
self.cancel.set(true);
}
}
#[deprecated(since = "0.1.2", note = "use block_on_all instead")]
#[doc(hidden)]
pub fn run<F, R>(f: F) -> R
where F: FnOnce(&mut Context) -> R
{
let mut context = Context {
cancel: Cell::new(false),
_p: PhantomData,
};
let mut current_thread = CurrentThread::new();
let ret = current_thread
.block_on(future::lazy(|| Ok::<_, ()>(f(&mut context))))
.unwrap();
if context.cancel.get() {
return ret;
}
current_thread.run().unwrap();
ret
}
#[deprecated(since = "0.1.2", note = "use TaskExecutor::current instead")]
#[doc(hidden)]
pub fn task_executor() -> TaskExecutor {
TaskExecutor::current()
}