1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
use pool::Pool;
use task::{BlockingState, Task};
use futures::{Async, Poll};
use std::cell::UnsafeCell;
use std::fmt;
use std::ptr;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
use std::sync::Arc;
use std::thread;
/// Manages the state around entering a blocking section and tasks that are
/// queued pending the ability to block.
///
/// This is a hybrid counter and intrusive mpsc channel (like `Queue`).
#[derive(Debug)]
pub(crate) struct Blocking {
/// Queue head.
///
/// This is either the current remaining capacity for blocking sections
/// **or** if the max has been reached, the head of a pending blocking
/// capacity channel of tasks.
///
/// When this points to a task, it represents a strong reference, i.e.
/// `Arc<Task>`.
state: AtomicUsize,
/// Tail pointer. This is `Arc<Task>` unless it points to `stub`.
tail: UnsafeCell<*mut Task>,
/// Stub pointer, used as part of the intrusive mpsc channel algorithm
/// described by 1024cores.
stub: Box<Task>,
/// The channel algorithm is MPSC. This means that, in order to pop tasks,
/// coordination is required.
///
/// Since it doesn't matter *which* task pops & notifies the queued task, we
/// can avoid a full mutex and make the "lock" lock free.
///
/// Instead, threads race to set the "entered" bit. When the transition is
/// successfully made, the thread has permission to pop tasks off of the
/// queue. If a thread loses the race, instead of waiting to pop a task, it
/// signals to the winning thread that it should pop an additional task.
lock: AtomicUsize,
}
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub(crate) enum CanBlock {
/// Blocking capacity has been allocated to this task.
///
/// The capacity allocation is initially checked before a task is polled. If
/// capacity has been allocated, it is consumed and tracked as `Allocated`.
Allocated,
/// Allocation capacity must be either available to the task when it is
/// polled or not available. This means that a task can only ask for
/// capacity once. This state is used to track a task that has not yet asked
/// for blocking capacity. When a task needs blocking capacity, if it is in
/// this state, it can immediately try to get an allocation.
CanRequest,
/// The task has requested blocking capacity, but none is available.
NoCapacity,
}
/// Decorates the `usize` value of `Blocking::state`, providing fns to
/// manipulate the state instead of requiring bit ops.
#[derive(Copy, Clone, Eq, PartialEq)]
struct State(usize);
/// Flag differentiating between remaining capacity and task pointers.
///
/// If we assume pointers are properly aligned, then the least significant bit
/// will always be zero. So, we use that bit to track if the value represents a
/// number.
const NUM_FLAG: usize = 1;
/// When representing "numbers", the state has to be shifted this much (to get
/// rid of the flag bit).
const NUM_SHIFT: usize = 1;
// ====== impl Blocking =====
//
impl Blocking {
/// Create a new `Blocking`.
pub fn new(capacity: usize) -> Blocking {
assert!(capacity > 0, "blocking capacity must be greater than zero");
let stub = Box::new(Task::stub());
let ptr = &*stub as *const _ as *mut _;
// Allocations are aligned
debug_assert!(ptr as usize & NUM_FLAG == 0);
// The initial state value. This starts at the max capacity.
let init = State::new(capacity);
Blocking {
state: AtomicUsize::new(init.into()),
tail: UnsafeCell::new(ptr),
stub: stub,
lock: AtomicUsize::new(0),
}
}
/// Atomically either acquire blocking capacity or queue the task to be
/// notified once capacity becomes available.
///
/// The caller must ensure that `task` has not previously been queued to be
/// notified when capacity becomes available.
pub fn poll_blocking_capacity(&self, task: &Arc<Task>) -> Poll<(), ::BlockingError> {
// This requires atomically claiming blocking capacity and if none is
// available, queuing &task.
// The task cannot be queued at this point. The caller must ensure this.
debug_assert!(!BlockingState::from(task.blocking.load(Acquire)).is_queued());
// Don't bump the ref count unless necessary.
let mut strong: Option<*const Task> = None;
// Load the state
let mut curr: State = self.state.load(Acquire).into();
loop {
let mut next = curr;
if !next.claim_capacity(&self.stub) {
debug_assert!(curr.ptr().is_some());
// Unable to claim capacity, so we must queue `task` onto the
// channel.
//
// This guard also serves to ensure that queuing work that is
// only needed to run once only gets run once.
if strong.is_none() {
// First, transition the task to a "queued" state. This
// prevents double queuing.
//
// This is also the only thread that can set the queued flag
// at this point. And, the goal is for this to only be
// visible when the task node is polled from the channel.
// The memory ordering is established by MPSC queue
// operation.
//
// Note that, if the task doesn't get queued (because the
// CAS fails and capacity is now available) then this flag
// must be unset. Again, there is no race because until the
// task is queued, no other thread can see it.
let prev = BlockingState::toggle_queued(&task.blocking, Relaxed);
debug_assert!(!prev.is_queued());
// Bump the ref count
strong = Some(Arc::into_raw(task.clone()));
// Set the next pointer. This does not require an atomic
// operation as this node is not currently accessible to
// other threads via the queue.
task.next_blocking.store(ptr::null_mut(), Relaxed);
}
let ptr = strong.unwrap();
// Update the head to point to the new node. We need to see the
// previous node in order to update the next pointer as well as
// release `task` to any other threads calling `push`.
next.set_ptr(ptr);
}
debug_assert_ne!(curr.0, 0);
debug_assert_ne!(next.0, 0);
let actual = self
.state
.compare_and_swap(curr.into(), next.into(), AcqRel)
.into();
if curr == actual {
break;
}
curr = actual;
}
match curr.ptr() {
Some(prev) => {
let ptr = strong.unwrap();
// Finish pushing
unsafe {
(*prev).next_blocking.store(ptr as *mut _, Release);
}
// The node was queued to be notified once capacity is made
// available.
Ok(Async::NotReady)
}
None => {
debug_assert!(curr.remaining_capacity() > 0);
// If `strong` is set, gotta undo a bunch of work
if let Some(ptr) = strong {
let _ = unsafe { Arc::from_raw(ptr) };
// Unset the queued flag.
let prev = BlockingState::toggle_queued(&task.blocking, Relaxed);
debug_assert!(prev.is_queued());
}
// Capacity has been obtained
Ok(().into())
}
}
}
unsafe fn push_stub(&self) {
let task: *mut Task = &*self.stub as *const _ as *mut _;
// Set the next pointer. This does not require an atomic operation as
// this node is not accessible. The write will be flushed with the next
// operation
(*task).next_blocking.store(ptr::null_mut(), Relaxed);
// Update the head to point to the new node. We need to see the previous
// node in order to update the next pointer as well as release `task`
// to any other threads calling `push`.
let prev = self.state.swap(task as usize, AcqRel);
// The stub is only pushed when there are pending tasks. Because of
// this, the state must *always* be in pointer mode.
debug_assert!(State::from(prev).is_ptr());
let prev = prev as *const Task;
// We don't want the *existing* pointer to be a stub.
debug_assert_ne!(prev, task);
// Release `task` to the consume end.
(*prev).next_blocking.store(task, Release);
}
pub fn notify_task(&self, pool: &Arc<Pool>) {
let prev = self.lock.fetch_add(1, AcqRel);
if prev != 0 {
// Another thread has the lock and will be responsible for notifying
// pending tasks.
return;
}
let mut dec = 1;
loop {
let mut remaining_pops = dec;
while remaining_pops > 0 {
remaining_pops -= 1;
let task = match self.pop(remaining_pops) {
Some(t) => t,
None => break,
};
Task::notify_blocking(task, pool);
}
// Decrement the number of handled notifications
let actual = self.lock.fetch_sub(dec, AcqRel);
if actual == dec {
break;
}
// This can only be greater than expected as we are the only thread
// that is decrementing.
debug_assert!(actual > dec);
dec = actual - dec;
}
}
/// Pop a task
///
/// `rem` represents the remaining number of times the caller will pop. If
/// there are no more tasks to pop, `rem` is used to set the remaining
/// capacity.
fn pop(&self, rem: usize) -> Option<Arc<Task>> {
'outer: loop {
unsafe {
let mut tail = *self.tail.get();
let mut next = (*tail).next_blocking.load(Acquire);
let stub = &*self.stub as *const _ as *mut _;
if tail == stub {
if next.is_null() {
// This loop is not part of the standard intrusive mpsc
// channel algorithm. This is where we atomically pop
// the last task and add `rem` to the remaining capacity.
//
// This modification to the pop algorithm works because,
// at this point, we have not done any work (only done
// reading). We have a *pretty* good idea that there is
// no concurrent pusher.
//
// The capacity is then atomically added by doing an
// AcqRel CAS on `state`. The `state` cell is the
// linchpin of the algorithm.
//
// By successfully CASing `head` w/ AcqRel, we ensure
// that, if any thread was racing and entered a push, we
// see that and abort pop, retrying as it is
// "inconsistent".
let mut curr: State = self.state.load(Acquire).into();
loop {
if curr.has_task(&self.stub) {
// Inconsistent state, yield the thread and try
// again.
thread::yield_now();
continue 'outer;
}
let mut after = curr;
// +1 here because `rem` represents the number of
// pops that will come after the current one.
after.add_capacity(rem + 1, &self.stub);
let actual: State = self
.state
.compare_and_swap(curr.into(), after.into(), AcqRel)
.into();
if actual == curr {
// Successfully returned the remaining capacity
return None;
}
curr = actual;
}
}
*self.tail.get() = next;
tail = next;
next = (*next).next_blocking.load(Acquire);
}
if !next.is_null() {
*self.tail.get() = next;
// No ref_count inc is necessary here as this poll is paired
// with a `push` which "forgets" the handle.
return Some(Arc::from_raw(tail));
}
let state = self.state.load(Acquire);
// This must always be a pointer
debug_assert!(State::from(state).is_ptr());
if state != tail as usize {
// Try again
thread::yield_now();
continue 'outer;
}
self.push_stub();
next = (*tail).next_blocking.load(Acquire);
if !next.is_null() {
*self.tail.get() = next;
return Some(Arc::from_raw(tail));
}
thread::yield_now();
// Try again
}
}
}
}
// ====== impl State =====
impl State {
/// Return a new `State` representing the remaining capacity at the maximum
/// value.
fn new(capacity: usize) -> State {
State((capacity << NUM_SHIFT) | NUM_FLAG)
}
fn remaining_capacity(&self) -> usize {
if !self.has_remaining_capacity() {
return 0;
}
self.0 >> 1
}
fn has_remaining_capacity(&self) -> bool {
self.0 & NUM_FLAG == NUM_FLAG
}
fn has_task(&self, stub: &Task) -> bool {
!(self.has_remaining_capacity() || self.is_stub(stub))
}
fn is_stub(&self, stub: &Task) -> bool {
self.0 == stub as *const _ as usize
}
/// Try to claim blocking capacity.
///
/// # Return
///
/// Returns `true` if the capacity was claimed, `false` otherwise. If
/// `false` is returned, it can be assumed that `State` represents the head
/// pointer in the mpsc channel.
fn claim_capacity(&mut self, stub: &Task) -> bool {
if !self.has_remaining_capacity() {
return false;
}
debug_assert!(self.0 != 1);
self.0 -= 1 << NUM_SHIFT;
if self.0 == NUM_FLAG {
// Set the state to the stub pointer.
self.0 = stub as *const _ as usize;
}
true
}
/// Add blocking capacity.
fn add_capacity(&mut self, capacity: usize, stub: &Task) -> bool {
debug_assert!(capacity > 0);
if self.is_stub(stub) {
self.0 = (capacity << NUM_SHIFT) | NUM_FLAG;
true
} else if self.has_remaining_capacity() {
self.0 += capacity << NUM_SHIFT;
true
} else {
false
}
}
fn is_ptr(&self) -> bool {
self.0 & NUM_FLAG == 0
}
fn ptr(&self) -> Option<*const Task> {
if self.is_ptr() {
Some(self.0 as *const Task)
} else {
None
}
}
fn set_ptr(&mut self, ptr: *const Task) {
let ptr = ptr as usize;
debug_assert!(ptr & NUM_FLAG == 0);
self.0 = ptr
}
}
impl From<usize> for State {
fn from(src: usize) -> State {
State(src)
}
}
impl From<State> for usize {
fn from(src: State) -> usize {
src.0
}
}
impl fmt::Debug for State {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let mut fmt = fmt.debug_struct("State");
if self.is_ptr() {
fmt.field("ptr", &self.0);
} else {
fmt.field("remaining", &self.remaining_capacity());
}
fmt.finish()
}
}