1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
mod blocking;
mod blocking_state;
mod state;
pub(crate) use self::blocking::{Blocking, CanBlock};
use self::blocking_state::BlockingState;
use self::state::State;
use notifier::Notifier;
use pool::Pool;
use futures::executor::{self, Spawn};
use futures::{self, Async, Future};
use std::cell::{Cell, UnsafeCell};
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
use std::sync::atomic::{AtomicPtr, AtomicUsize};
use std::sync::Arc;
use std::{fmt, panic, ptr};
/// Harness around a future.
///
/// This also behaves as a node in the inbound work queue and the blocking
/// queue.
pub(crate) struct Task {
/// Task lifecycle state
state: AtomicUsize,
/// Task blocking related state
blocking: AtomicUsize,
/// Next pointer in the queue of tasks pending blocking capacity.
next_blocking: AtomicPtr<Task>,
/// ID of the worker that polled this task first.
///
/// This field can be a `Cell` because it's only accessed by the worker thread that is
/// executing the task.
///
/// The worker ID is represented by a `u32` rather than `usize` in order to save some space
/// on 64-bit platforms.
pub reg_worker: Cell<Option<u32>>,
/// The key associated with this task in the `Slab` it was registered in.
///
/// This field can be a `Cell` because it's only accessed by the worker thread that has
/// registered the task.
pub reg_index: Cell<usize>,
/// Store the future at the head of the struct
///
/// The future is dropped immediately when it transitions to Complete
future: UnsafeCell<Option<Spawn<BoxFuture>>>,
}
#[derive(Debug)]
pub(crate) enum Run {
Idle,
Schedule,
Complete,
}
type BoxFuture = Box<dyn Future<Item = (), Error = ()> + Send + 'static>;
// ===== impl Task =====
impl Task {
/// Create a new `Task` as a harness for `future`.
pub fn new(future: BoxFuture) -> Task {
// Wrap the future with an execution context.
let task_fut = executor::spawn(future);
Task {
state: AtomicUsize::new(State::new().into()),
blocking: AtomicUsize::new(BlockingState::new().into()),
next_blocking: AtomicPtr::new(ptr::null_mut()),
reg_worker: Cell::new(None),
reg_index: Cell::new(0),
future: UnsafeCell::new(Some(task_fut)),
}
}
/// Create a fake `Task` to be used as part of the intrusive mpsc channel
/// algorithm.
fn stub() -> Task {
let future = Box::new(futures::empty()) as BoxFuture;
let task_fut = executor::spawn(future);
Task {
state: AtomicUsize::new(State::stub().into()),
blocking: AtomicUsize::new(BlockingState::new().into()),
next_blocking: AtomicPtr::new(ptr::null_mut()),
reg_worker: Cell::new(None),
reg_index: Cell::new(0),
future: UnsafeCell::new(Some(task_fut)),
}
}
/// Execute the task returning `Run::Schedule` if the task needs to be
/// scheduled again.
pub fn run(&self, unpark: &Arc<Notifier>) -> Run {
use self::State::*;
// Transition task to running state. At this point, the task must be
// scheduled.
let actual: State = self
.state
.compare_and_swap(Scheduled.into(), Running.into(), AcqRel)
.into();
match actual {
Scheduled => {}
_ => panic!("unexpected task state; {:?}", actual),
}
trace!(
"Task::run; state={:?}",
State::from(self.state.load(Relaxed))
);
// The transition to `Running` done above ensures that a lock on the
// future has been obtained.
let fut = unsafe { &mut (*self.future.get()) };
// This block deals with the future panicking while being polled.
//
// If the future panics, then the drop handler must be called such that
// `thread::panicking() -> true`. To do this, the future is dropped from
// within the catch_unwind block.
let res = panic::catch_unwind(panic::AssertUnwindSafe(|| {
struct Guard<'a>(&'a mut Option<Spawn<BoxFuture>>, bool);
impl<'a> Drop for Guard<'a> {
fn drop(&mut self) {
// This drops the future
if self.1 {
let _ = self.0.take();
}
}
}
let mut g = Guard(fut, true);
let ret =
g.0.as_mut()
.unwrap()
.poll_future_notify(unpark, self as *const _ as usize);
g.1 = false;
ret
}));
match res {
Ok(Ok(Async::Ready(_))) | Ok(Err(_)) | Err(_) => {
trace!(" -> task complete");
// The future has completed. Drop it immediately to free
// resources and run drop handlers.
//
// The `Task` harness will stay around longer if it is contained
// by any of the various queues.
self.drop_future();
// Transition to the completed state
self.state.store(State::Complete.into(), Release);
if let Err(panic_err) = res {
if let Some(ref f) = unpark.pool.config.panic_handler {
f(panic_err);
}
}
Run::Complete
}
Ok(Ok(Async::NotReady)) => {
trace!(" -> not ready");
// Attempt to transition from Running -> Idle, if successful,
// then the task does not need to be scheduled again. If the CAS
// fails, then the task has been unparked concurrent to running,
// in which case it transitions immediately back to scheduled
// and we return `true`.
let prev: State = self
.state
.compare_and_swap(Running.into(), Idle.into(), AcqRel)
.into();
match prev {
Running => Run::Idle,
Notified => {
self.state.store(Scheduled.into(), Release);
Run::Schedule
}
_ => unreachable!(),
}
}
}
}
/// Aborts this task.
///
/// This is called when the threadpool shuts down and the task has already beed polled but not
/// completed.
pub fn abort(&self) {
use self::State::*;
let mut state = self.state.load(Acquire).into();
loop {
match state {
Idle | Scheduled => {}
Running | Notified | Complete | Aborted => {
// It is assumed that no worker threads are running so the task must be either
// in the idle or scheduled state.
panic!("unexpected state while aborting task: {:?}", state);
}
}
let actual = self
.state
.compare_and_swap(state.into(), Aborted.into(), AcqRel)
.into();
if actual == state {
// The future has been aborted. Drop it immediately to free resources and run drop
// handlers.
self.drop_future();
break;
}
state = actual;
}
}
/// Notify the task
pub fn notify(me: Arc<Task>, pool: &Arc<Pool>) {
if me.schedule() {
let _ = pool.submit(me, pool);
}
}
/// Notify the task it has been allocated blocking capacity
pub fn notify_blocking(me: Arc<Task>, pool: &Arc<Pool>) {
BlockingState::notify_blocking(&me.blocking, AcqRel);
Task::notify(me, pool);
}
/// Transition the task state to scheduled.
///
/// Returns `true` if the caller is permitted to schedule the task.
pub fn schedule(&self) -> bool {
use self::State::*;
loop {
// Scheduling can only be done from the `Idle` state.
let actual = self
.state
.compare_and_swap(Idle.into(), Scheduled.into(), AcqRel)
.into();
match actual {
Idle => return true,
Running => {
// The task is already running on another thread. Transition
// the state to `Notified`. If this CAS fails, then restart
// the logic again from `Idle`.
let actual = self
.state
.compare_and_swap(Running.into(), Notified.into(), AcqRel)
.into();
match actual {
Idle => continue,
_ => return false,
}
}
Complete | Aborted | Notified | Scheduled => return false,
}
}
}
/// Consumes any allocated capacity to block.
///
/// Returns `true` if capacity was allocated, `false` otherwise.
pub fn consume_blocking_allocation(&self) -> CanBlock {
// This flag is the primary point of coordination. The queued flag
// happens "around" setting the blocking capacity.
BlockingState::consume_allocation(&self.blocking, AcqRel)
}
/// Drop the future
///
/// This must only be called by the thread that successfully transitioned
/// the future state to `Running`.
fn drop_future(&self) {
let _ = unsafe { (*self.future.get()).take() };
}
}
impl fmt::Debug for Task {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Task")
.field("state", &self.state)
.field("future", &"Spawn<BoxFuture>")
.finish()
}
}