1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Authenticated Encryption with Associated Data (AEAD).
//!
//! See [Authenticated encryption: relations among notions and analysis of the
//! generic composition paradigm][AEAD] for an introduction to the concept of
//! AEADs.
//!
//! [AEAD]: http://www-cse.ucsd.edu/~mihir/papers/oem.html
//! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD
use self::block::{Block, BLOCK_LEN};
use crate::{
constant_time, cpu, error,
polyfill::{self, convert::*},
};
pub use self::{
aes_gcm::{AES_128_GCM, AES_256_GCM},
chacha20_poly1305::CHACHA20_POLY1305,
nonce::{Nonce, NONCE_LEN},
};
/// A key for authenticating and decrypting (“opening”) AEAD-protected data.
pub struct OpeningKey {
key: Key,
}
derive_debug_via_field!(OpeningKey, key);
impl OpeningKey {
/// Create a new opening key.
///
/// `key_bytes` must be exactly `algorithm.key_len` bytes long.
#[inline]
pub fn new(
algorithm: &'static Algorithm, key_bytes: &[u8],
) -> Result<OpeningKey, error::Unspecified> {
Ok(OpeningKey {
key: Key::new(algorithm, key_bytes)?,
})
}
/// The key's AEAD algorithm.
#[inline(always)]
pub fn algorithm(&self) -> &'static Algorithm { self.key.algorithm() }
}
/// Authenticates and decrypts (“opens”) data in place.
///
/// The input may have a prefix that is `in_prefix_len` bytes long; any such
/// prefix is ignored on input and overwritten on output. The last
/// `key.algorithm().tag_len()` bytes of `ciphertext_and_tag_modified_in_place`
/// must be the tag. The part of `ciphertext_and_tag_modified_in_place` between
/// the prefix and the tag is the input ciphertext.
///
/// When `open_in_place()` returns `Ok(plaintext)`, the decrypted output is
/// `plaintext`, which is
/// `&mut ciphertext_and_tag_modified_in_place[..plaintext.len()]`. That is,
/// the output plaintext overwrites some or all of the prefix and ciphertext.
/// To put it another way, the ciphertext is shifted forward `in_prefix_len`
/// bytes and then decrypted in place. To have the output overwrite the input
/// without shifting, pass 0 as `in_prefix_len`.
///
/// When `open_in_place()` returns `Err(..)`,
/// `ciphertext_and_tag_modified_in_place` may have been overwritten in an
/// unspecified way.
///
/// The shifting feature is useful in the case where multiple packets are
/// being reassembled in place. Consider this example where the peer has sent
/// the message “Split stream reassembled in place” split into three sealed
/// packets:
///
/// ```ascii-art
/// Packet 1 Packet 2 Packet 3
/// Input: [Header][Ciphertext][Tag][Header][Ciphertext][Tag][Header][Ciphertext][Tag]
/// | +--------------+ |
/// +------+ +-----+ +----------------------------------+
/// v v v
/// Output: [Plaintext][Plaintext][Plaintext]
/// “Split stream reassembled in place”
/// ```
///
/// Let's say the header is always 5 bytes (like TLS 1.2) and the tag is always
/// 16 bytes (as for AES-GCM and ChaCha20-Poly1305). Then for this example,
/// `in_prefix_len` would be `5` for the first packet, `(5 + 16) + 5` for the
/// second packet, and `(2 * (5 + 16)) + 5` for the third packet.
///
/// (The input/output buffer is expressed as combination of `in_prefix_len`
/// and `ciphertext_and_tag_modified_in_place` because Rust's type system
/// does not allow us to have two slices, one mutable and one immutable, that
/// reference overlapping memory.)
pub fn open_in_place<'a>(
key: &OpeningKey, nonce: Nonce, aad: Aad, in_prefix_len: usize,
ciphertext_and_tag_modified_in_place: &'a mut [u8],
) -> Result<&'a mut [u8], error::Unspecified> {
let ciphertext_and_tag_len = ciphertext_and_tag_modified_in_place
.len()
.checked_sub(in_prefix_len)
.ok_or(error::Unspecified)?;
let ciphertext_len = ciphertext_and_tag_len
.checked_sub(TAG_LEN)
.ok_or(error::Unspecified)?;
check_per_nonce_max_bytes(key.key.algorithm, ciphertext_len)?;
let (in_out, received_tag) =
ciphertext_and_tag_modified_in_place.split_at_mut(in_prefix_len + ciphertext_len);
let Tag(calculated_tag) = (key.key.algorithm.open)(
&key.key.inner,
nonce,
aad,
in_prefix_len,
in_out,
key.key.cpu_features,
);
if constant_time::verify_slices_are_equal(calculated_tag.as_ref(), received_tag).is_err() {
// Zero out the plaintext so that it isn't accidentally leaked or used
// after verification fails. It would be safest if we could check the
// tag before decrypting, but some `open` implementations interleave
// authentication with decryption for performance.
for b in &mut in_out[..ciphertext_len] {
*b = 0;
}
return Err(error::Unspecified);
}
// `ciphertext_len` is also the plaintext length.
Ok(&mut in_out[..ciphertext_len])
}
/// A key for encrypting and signing (“sealing”) data.
pub struct SealingKey {
key: Key,
}
derive_debug_via_field!(SealingKey, key);
impl SealingKey {
/// Constructs a new sealing key from `key_bytes`.
#[inline]
pub fn new(
algorithm: &'static Algorithm, key_bytes: &[u8],
) -> Result<SealingKey, error::Unspecified> {
Ok(SealingKey {
key: Key::new(algorithm, key_bytes)?,
})
}
/// The key's AEAD algorithm.
#[inline(always)]
pub fn algorithm(&self) -> &'static Algorithm { self.key.algorithm() }
}
/// Encrypts and signs (“seals”) data in place.
///
/// `nonce` must be unique for every use of the key to seal data.
///
/// The input is `in_out[..(in_out.len() - out_suffix_capacity)]`; i.e. the
/// input is the part of `in_out` that precedes the suffix. When
/// `seal_in_place()` returns `Ok(out_len)`, the encrypted and signed output is
/// `in_out[..out_len]`; i.e. the output has been written over input and at
/// least part of the data reserved for the suffix. (The input/output buffer
/// is expressed this way because Rust's type system does not allow us to have
/// two slices, one mutable and one immutable, that reference overlapping
/// memory at the same time.)
///
/// `out_suffix_capacity` must be at least `key.algorithm().tag_len()`. See
/// also `MAX_TAG_LEN`.
///
/// `aad` is the additional authenticated data, if any.
pub fn seal_in_place(
key: &SealingKey, nonce: Nonce, aad: Aad, in_out: &mut [u8], out_suffix_capacity: usize,
) -> Result<usize, error::Unspecified> {
if out_suffix_capacity < key.key.algorithm.tag_len() {
return Err(error::Unspecified);
}
let in_out_len = in_out
.len()
.checked_sub(out_suffix_capacity)
.ok_or(error::Unspecified)?;
check_per_nonce_max_bytes(key.key.algorithm, in_out_len)?;
let (in_out, tag_out) = in_out.split_at_mut(in_out_len);
let tag_out: &mut [u8; TAG_LEN] = tag_out.try_into_()?;
let Tag(tag) =
(key.key.algorithm.seal)(&key.key.inner, nonce, aad, in_out, key.key.cpu_features);
tag_out.copy_from_slice(tag.as_ref());
Ok(in_out_len + TAG_LEN)
}
/// The additionally authenticated data (AAD) for an opening or sealing
/// operation. This data is authenticated but is **not** encrypted.
#[repr(transparent)]
pub struct Aad<'a>(&'a [u8]);
impl<'a> Aad<'a> {
/// Construct the `Aad` by borrowing a contiguous sequence of bytes.
#[inline]
pub fn from(aad: &'a [u8]) -> Self { Aad(aad) }
}
impl Aad<'static> {
/// Construct an empty `Aad`.
pub fn empty() -> Self { Self::from(&[]) }
}
/// `OpeningKey` and `SealingKey` are type-safety wrappers around `Key`, which
/// does all the actual work via the C AEAD interface.
struct Key {
inner: KeyInner,
algorithm: &'static Algorithm,
cpu_features: cpu::Features,
}
derive_debug_via_field!(Key, algorithm);
#[allow(variant_size_differences)]
enum KeyInner {
AesGcm(aes_gcm::Key),
ChaCha20Poly1305(chacha20_poly1305::Key),
}
impl Key {
fn new(algorithm: &'static Algorithm, key_bytes: &[u8]) -> Result<Self, error::Unspecified> {
let cpu_features = cpu::features();
Ok(Key {
inner: (algorithm.init)(key_bytes, cpu_features)?,
algorithm,
cpu_features,
})
}
/// The key's AEAD algorithm.
#[inline(always)]
fn algorithm(&self) -> &'static Algorithm { self.algorithm }
}
/// An AEAD Algorithm.
pub struct Algorithm {
init: fn(key: &[u8], cpu_features: cpu::Features) -> Result<KeyInner, error::Unspecified>,
seal: fn(
key: &KeyInner,
nonce: Nonce,
aad: Aad,
in_out: &mut [u8],
cpu_features: cpu::Features,
) -> Tag,
open: fn(
key: &KeyInner,
nonce: Nonce,
aad: Aad,
in_prefix_len: usize,
in_out: &mut [u8],
cpu_features: cpu::Features,
) -> Tag,
key_len: usize,
id: AlgorithmID,
/// Use `max_input_len!()` to initialize this.
// TODO: Make this `usize`.
max_input_len: u64,
}
const fn max_input_len(block_len: usize, overhead_blocks_per_nonce: usize) -> u64 {
// Each of our AEADs use a 32-bit block counter so the maximum is the
// largest input that will not overflow the counter.
((1u64 << 32) - polyfill::u64_from_usize(overhead_blocks_per_nonce))
* polyfill::u64_from_usize(block_len)
}
impl Algorithm {
/// The length of the key.
#[inline(always)]
pub fn key_len(&self) -> usize { self.key_len }
/// The length of a tag.
///
/// See also `MAX_TAG_LEN`.
#[inline(always)]
pub fn tag_len(&self) -> usize { TAG_LEN }
/// The length of the nonces.
#[inline(always)]
pub fn nonce_len(&self) -> usize { NONCE_LEN }
}
derive_debug_via_id!(Algorithm);
#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
AES_128_GCM,
AES_256_GCM,
CHACHA20_POLY1305,
}
impl PartialEq for Algorithm {
fn eq(&self, other: &Self) -> bool { self.id == other.id }
}
impl Eq for Algorithm {}
/// An authentication tag.
#[must_use]
#[repr(C)]
struct Tag(Block);
// All the AEADs we support use 128-bit tags.
const TAG_LEN: usize = BLOCK_LEN;
/// The maximum length of a tag for the algorithms in this module.
pub const MAX_TAG_LEN: usize = TAG_LEN;
fn check_per_nonce_max_bytes(alg: &Algorithm, in_out_len: usize) -> Result<(), error::Unspecified> {
if polyfill::u64_from_usize(in_out_len) > alg.max_input_len {
return Err(error::Unspecified);
}
Ok(())
}
#[derive(Clone, Copy)]
enum Direction {
Opening { in_prefix_len: usize },
Sealing,
}
mod aes;
mod aes_gcm;
mod block;
mod chacha;
mod chacha20_poly1305;
pub mod chacha20_poly1305_openssh;
mod gcm;
mod nonce;
mod poly1305;
pub mod quic;
mod shift;