1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{
    aes::{self, Counter},
    gcm, shift, Aad, Block, Direction, Nonce, Tag, BLOCK_LEN,
};
use crate::{aead, cpu, endian::*, error, polyfill};

/// AES-128 in GCM mode with 128-bit tags and 96 bit nonces.
pub static AES_128_GCM: aead::Algorithm = aead::Algorithm {
    key_len: 16,
    init: init_128,
    seal: aes_gcm_seal,
    open: aes_gcm_open,
    id: aead::AlgorithmID::AES_128_GCM,
    max_input_len: AES_GCM_MAX_INPUT_LEN,
};

/// AES-256 in GCM mode with 128-bit tags and 96 bit nonces.
pub static AES_256_GCM: aead::Algorithm = aead::Algorithm {
    key_len: 32,
    init: init_256,
    seal: aes_gcm_seal,
    open: aes_gcm_open,
    id: aead::AlgorithmID::AES_256_GCM,
    max_input_len: AES_GCM_MAX_INPUT_LEN,
};

pub struct Key {
    gcm_key: gcm::Key, // First because it has a large alignment requirement.
    aes_key: aes::Key,
}

fn init_128(key: &[u8], cpu_features: cpu::Features) -> Result<aead::KeyInner, error::Unspecified> {
    init(key, aes::Variant::AES_128, cpu_features)
}

fn init_256(key: &[u8], cpu_features: cpu::Features) -> Result<aead::KeyInner, error::Unspecified> {
    init(key, aes::Variant::AES_256, cpu_features)
}

fn init(
    key: &[u8], variant: aes::Variant, cpu_features: cpu::Features,
) -> Result<aead::KeyInner, error::Unspecified> {
    let aes_key = aes::Key::new(key, variant, cpu_features)?;
    let gcm_key = gcm::Key::new(aes_key.encrypt_block(Block::zero()), cpu_features);
    Ok(aead::KeyInner::AesGcm(Key { aes_key, gcm_key }))
}

const CHUNK_BLOCKS: usize = 3 * 1024 / 16;

fn aes_gcm_seal(
    key: &aead::KeyInner, nonce: Nonce, aad: Aad, in_out: &mut [u8], cpu_features: cpu::Features,
) -> Tag {
    aead(key, nonce, aad, in_out, Direction::Sealing, cpu_features)
}

fn aes_gcm_open(
    key: &aead::KeyInner, nonce: Nonce, aad: Aad, in_prefix_len: usize, in_out: &mut [u8],
    cpu_features: cpu::Features,
) -> Tag {
    aead(
        key,
        nonce,
        aad,
        in_out,
        Direction::Opening { in_prefix_len },
        cpu_features,
    )
}

#[inline(always)] // Avoid branching on `direction`.
fn aead(
    key: &aead::KeyInner, nonce: Nonce, aad: Aad, in_out: &mut [u8], direction: Direction,
    cpu_features: cpu::Features,
) -> Tag {
    let Key { aes_key, gcm_key } = match key {
        aead::KeyInner::AesGcm(key) => key,
        _ => unreachable!(),
    };

    let mut ctr = Counter::one(nonce);
    let tag_iv = ctr.increment();

    let aad_len = aad.0.len();
    let mut gcm_ctx = gcm::Context::new(gcm_key, aad, cpu_features);

    let in_prefix_len = match direction {
        Direction::Opening { in_prefix_len } => in_prefix_len,
        Direction::Sealing => 0,
    };

    let total_in_out_len = in_out.len() - in_prefix_len;

    let in_out = integrated_aes_gcm(
        aes_key,
        &mut gcm_ctx,
        in_out,
        &mut ctr,
        direction,
        cpu_features,
    );
    let in_out_len = in_out.len() - in_prefix_len;

    // Process any (remaining) whole blocks.
    let whole_len = in_out_len - (in_out_len % BLOCK_LEN);
    {
        let mut chunk_len = CHUNK_BLOCKS * BLOCK_LEN;
        let mut output = 0;
        let mut input = in_prefix_len;
        loop {
            if whole_len - output < chunk_len {
                chunk_len = whole_len - output;
            }
            if chunk_len == 0 {
                break;
            }

            if let Direction::Opening { .. } = direction {
                gcm_ctx.update_blocks(&in_out[input..][..chunk_len]);
            }

            aes_key.ctr32_encrypt_blocks(
                &mut in_out[output..][..(chunk_len + in_prefix_len)],
                direction,
                &mut ctr,
            );

            if let Direction::Sealing = direction {
                gcm_ctx.update_blocks(&in_out[output..][..chunk_len]);
            }

            output += chunk_len;
            input += chunk_len;
        }
    }

    // Process any remaining partial block.
    let remainder = &mut in_out[whole_len..];
    shift::shift_partial((in_prefix_len, remainder), |remainder| {
        let mut input = Block::zero();
        input.partial_copy_from(remainder);
        if let Direction::Opening { .. } = direction {
            gcm_ctx.update_block(input);
        }
        let mut output = aes_key.encrypt_iv_xor_block(ctr.into(), input);
        if let Direction::Sealing = direction {
            polyfill::slice::fill(&mut output.as_mut()[remainder.len()..], 0);
            gcm_ctx.update_block(output);
        }
        output
    });

    // Authenticate the final block containing the input lengths.
    let aad_bits = polyfill::u64_from_usize(aad_len) << 3;
    let ciphertext_bits = polyfill::u64_from_usize(total_in_out_len) << 3;
    gcm_ctx.update_block(Block::from_u64_be(
        BigEndian::from(aad_bits),
        BigEndian::from(ciphertext_bits),
    ));

    // Finalize the tag and return it.
    gcm_ctx.pre_finish(|pre_tag| {
        let block = tag_iv.into_block_less_safe();
        let mut tag = aes_key.encrypt_block(block);
        tag.bitxor_assign(pre_tag);
        Tag(tag)
    })
}

// Returns the data that wasn't processed.
#[cfg(target_arch = "x86_64")]
#[inline] // Optimize out the match on `direction`.
fn integrated_aes_gcm<'a>(
    aes_key: &aes::Key, gcm_ctx: &mut gcm::Context, in_out: &'a mut [u8], ctr: &mut Counter,
    direction: Direction, cpu_features: cpu::Features,
) -> &'a mut [u8] {
    use libc::size_t;

    if !aes_key.is_aes_hw() || !gcm_ctx.is_avx2(cpu_features) {
        return in_out;
    }

    let processed = match direction {
        Direction::Opening { in_prefix_len } => {
            extern "C" {
                fn GFp_aesni_gcm_decrypt(
                    input: *const u8, output: *mut u8, len: size_t, key: &aes::AES_KEY,
                    ivec: &mut Counter, gcm: &mut gcm::Context,
                ) -> size_t;
            }
            unsafe {
                GFp_aesni_gcm_decrypt(
                    in_out[in_prefix_len..].as_ptr(),
                    in_out.as_mut_ptr(),
                    in_out.len() - in_prefix_len,
                    aes_key.inner_less_safe(),
                    ctr,
                    gcm_ctx,
                )
            }
        },
        Direction::Sealing => {
            extern "C" {
                fn GFp_aesni_gcm_encrypt(
                    input: *const u8, output: *mut u8, len: size_t, key: &aes::AES_KEY,
                    ivec: &mut Counter, gcm: &mut gcm::Context,
                ) -> size_t;
            }
            unsafe {
                GFp_aesni_gcm_encrypt(
                    in_out.as_ptr(),
                    in_out.as_mut_ptr(),
                    in_out.len(),
                    aes_key.inner_less_safe(),
                    ctr,
                    gcm_ctx,
                )
            }
        },
    };

    &mut in_out[processed..]
}

#[cfg(not(target_arch = "x86_64"))]
#[inline]
fn integrated_aes_gcm<'a>(
    _: &aes::Key, _: &mut gcm::Context, in_out: &'a mut [u8], _: &mut Counter, _: Direction,
    _: cpu::Features,
) -> &'a mut [u8] {
    in_out // This doesn't process any of the input so it all remains.
}

const AES_GCM_MAX_INPUT_LEN: u64 = super::max_input_len(BLOCK_LEN, 2);

#[cfg(test)]
mod tests {
    #[test]
    fn max_input_len_test() {
        // [NIST SP800-38D] Section 5.2.1.1. Note that [RFC 5116 Section 5.1] and
        // [RFC 5116 Section 5.2] have an off-by-one error in `P_MAX`.
        //
        // [NIST SP800-38D]:
        //    http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
        // [RFC 5116 Section 5.1]: https://tools.ietf.org/html/rfc5116#section-5.1
        // [RFC 5116 Section 5.2]: https://tools.ietf.org/html/rfc5116#section-5.2
        const NIST_SP800_38D_MAX_BITS: u64 = (1u64 << 39) - 256;
        assert_eq!(NIST_SP800_38D_MAX_BITS, 549_755_813_632u64);
        assert_eq!(
            super::AES_128_GCM.max_input_len * 8,
            NIST_SP800_38D_MAX_BITS
        );
        assert_eq!(
            super::AES_256_GCM.max_input_len * 8,
            NIST_SP800_38D_MAX_BITS
        );
    }
}