1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! ECDSA Signatures using the P-256 and P-384 curves.

use super::digest_scalar::digest_scalar;
use crate::{
    arithmetic::montgomery::*,
    digest,
    ec::suite_b::{ops::*, public_key::*, verify_jacobian_point_is_on_the_curve},
    error,
    io::der,
    limb, sealed, signature,
};
use untrusted;

/// An ECDSA verification algorithm.
pub struct Algorithm {
    ops: &'static PublicScalarOps,
    digest_alg: &'static digest::Algorithm,
    split_rs:
        for<'a> fn(
            ops: &'static ScalarOps,
            input: &mut untrusted::Reader<'a>,
        )
            -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified>,
    id: AlgorithmID,
}

#[derive(Debug)]
enum AlgorithmID {
    ECDSA_P256_SHA256_ASN1,
    ECDSA_P256_SHA256_FIXED,
    ECDSA_P256_SHA384_ASN1,
    ECDSA_P384_SHA256_ASN1,
    ECDSA_P384_SHA384_ASN1,
    ECDSA_P384_SHA384_FIXED,
}

derive_debug_via_id!(Algorithm);

impl signature::VerificationAlgorithm for Algorithm {
    fn verify(
        &self, public_key: untrusted::Input, msg: untrusted::Input, signature: untrusted::Input,
    ) -> Result<(), error::Unspecified> {
        let e = {
            // NSA Guide Step 2: "Use the selected hash function to compute H =
            // Hash(M)."
            let h = digest::digest(self.digest_alg, msg.as_slice_less_safe());

            // NSA Guide Step 3: "Convert the bit string H to an integer e as
            // described in Appendix B.2."
            digest_scalar(self.ops.scalar_ops, h)
        };

        self.verify_digest(public_key, e, signature)
    }
}

impl Algorithm {
    /// This is intentionally not public.
    fn verify_digest(
        &self, public_key: untrusted::Input, e: Scalar, signature: untrusted::Input,
    ) -> Result<(), error::Unspecified> {
        // NSA Suite B Implementer's Guide to ECDSA Section 3.4.2.

        let public_key_ops = self.ops.public_key_ops;
        let scalar_ops = self.ops.scalar_ops;

        // NSA Guide Prerequisites:
        //
        //    Prior to accepting a verified digital signature as valid the
        //    verifier shall have:
        //
        //    1. assurance of the signatory’s claimed identity,
        //    2. an authentic copy of the domain parameters, (q, FR, a, b, SEED,
        //       G, n, h),
        //    3. assurance of the validity of the public key, and
        //    4. assurance that the claimed signatory actually possessed the
        //       private key that was used to generate the digital signature at
        //       the time that the signature was generated.
        //
        // Prerequisites #1 and #4 are outside the scope of what this function
        // can do. Prerequisite #2 is handled implicitly as the domain
        // parameters are hard-coded into the source. Prerequisite #3 is
        // handled by `parse_uncompressed_point`.
        let peer_pub_key = parse_uncompressed_point(public_key_ops, public_key)?;

        let (r, s) = signature.read_all(error::Unspecified, |input| {
            (self.split_rs)(scalar_ops, input)
        })?;

        // NSA Guide Step 1: "If r and s are not both integers in the interval
        // [1, n − 1], output INVALID."
        let r = scalar_parse_big_endian_variable(public_key_ops.common, limb::AllowZero::No, r)?;
        let s = scalar_parse_big_endian_variable(public_key_ops.common, limb::AllowZero::No, s)?;

        // NSA Guide Step 4: "Compute w = s**−1 mod n, using the routine in
        // Appendix B.1."
        let w = scalar_ops.scalar_inv_to_mont(&s);

        // NSA Guide Step 5: "Compute u1 = (e * w) mod n, and compute
        // u2 = (r * w) mod n."
        let u1 = scalar_ops.scalar_product(&e, &w);
        let u2 = scalar_ops.scalar_product(&r, &w);

        // NSA Guide Step 6: "Compute the elliptic curve point
        // R = (xR, yR) = u1*G + u2*Q, using EC scalar multiplication and EC
        // addition. If R is equal to the point at infinity, output INVALID."
        let product = twin_mul(self.ops.private_key_ops, &u1, &u2, &peer_pub_key);

        // Verify that the point we computed is on the curve; see
        // `verify_affine_point_is_on_the_curve_scaled` for details on why. It
        // would be more secure to do the check on the affine coordinates if we
        // were going to convert to affine form (again, see
        // `verify_affine_point_is_on_the_curve_scaled` for details on why).
        // But, we're going to avoid converting to affine for performance
        // reasons, so we do the verification using the Jacobian coordinates.
        let z2 = verify_jacobian_point_is_on_the_curve(public_key_ops.common, &product)?;

        // NSA Guide Step 7: "Compute v = xR mod n."
        // NSA Guide Step 8: "Compare v and r0. If v = r0, output VALID;
        // otherwise, output INVALID."
        //
        // Instead, we use Greg Maxwell's trick to avoid the inversion mod `q`
        // that would be necessary to compute the affine X coordinate.
        let x = public_key_ops.common.point_x(&product);
        fn sig_r_equals_x(
            ops: &PublicScalarOps, r: &Elem<Unencoded>, x: &Elem<R>, z2: &Elem<R>,
        ) -> bool {
            let cops = ops.public_key_ops.common;
            let r_jacobian = cops.elem_product(z2, r);
            let x = cops.elem_unencoded(x);
            ops.elem_equals(&r_jacobian, &x)
        }
        let r = self.ops.scalar_as_elem(&r);
        if sig_r_equals_x(self.ops, &r, &x, &z2) {
            return Ok(());
        }
        if self.ops.elem_less_than(&r, &self.ops.q_minus_n) {
            let r_plus_n = self.ops.elem_sum(&r, &public_key_ops.common.n);
            if sig_r_equals_x(self.ops, &r_plus_n, &x, &z2) {
                return Ok(());
            }
        }

        Err(error::Unspecified)
    }
}

impl sealed::Sealed for Algorithm {}

fn split_rs_fixed<'a>(
    ops: &'static ScalarOps, input: &mut untrusted::Reader<'a>,
) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified> {
    let scalar_len = ops.scalar_bytes_len();
    let r = input.skip_and_get_input(scalar_len)?;
    let s = input.skip_and_get_input(scalar_len)?;
    Ok((r, s))
}

fn split_rs_asn1<'a>(
    _ops: &'static ScalarOps, input: &mut untrusted::Reader<'a>,
) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified> {
    der::nested(input, der::Tag::Sequence, error::Unspecified, |input| {
        let r = der::positive_integer(input)?.big_endian_without_leading_zero();
        let s = der::positive_integer(input)?.big_endian_without_leading_zero();
        Ok((r, s))
    })
}

fn twin_mul(
    ops: &PrivateKeyOps, g_scalar: &Scalar, p_scalar: &Scalar, p_xy: &(Elem<R>, Elem<R>),
) -> Point {
    // XXX: Inefficient. TODO: implement interleaved wNAF multiplication.
    let scaled_g = ops.point_mul_base(g_scalar);
    let scaled_p = ops.point_mul(p_scalar, p_xy);
    ops.common.point_sum(&scaled_g, &scaled_p)
}

/// Verification of fixed-length (PKCS#11 style) ECDSA signatures using the
/// P-256 curve and SHA-256.
///
/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA256_FIXED: Algorithm = Algorithm {
    ops: &p256::PUBLIC_SCALAR_OPS,
    digest_alg: &digest::SHA256,
    split_rs: split_rs_fixed,
    id: AlgorithmID::ECDSA_P256_SHA256_FIXED,
};

/// Verification of fixed-length (PKCS#11 style) ECDSA signatures using the
/// P-384 curve and SHA-384.
///
/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA384_FIXED: Algorithm = Algorithm {
    ops: &p384::PUBLIC_SCALAR_OPS,
    digest_alg: &digest::SHA384,
    split_rs: split_rs_fixed,
    id: AlgorithmID::ECDSA_P384_SHA384_FIXED,
};

/// Verification of ASN.1 DER-encoded ECDSA signatures using the P-256 curve
/// and SHA-256.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA256_ASN1: Algorithm = Algorithm {
    ops: &p256::PUBLIC_SCALAR_OPS,
    digest_alg: &digest::SHA256,
    split_rs: split_rs_asn1,
    id: AlgorithmID::ECDSA_P256_SHA256_ASN1,
};

/// *Not recommended*. Verification of ASN.1 DER-encoded ECDSA signatures using
/// the P-256 curve and SHA-384.
///
/// In most situations, P-256 should be used only with SHA-256 and P-384
/// should be used only with SHA-384. However, in some cases, particularly TLS
/// on the web, it is necessary to support P-256 with SHA-384 for compatibility
/// with widely-deployed implementations that do not follow these guidelines.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA384_ASN1: Algorithm = Algorithm {
    ops: &p256::PUBLIC_SCALAR_OPS,
    digest_alg: &digest::SHA384,
    split_rs: split_rs_asn1,
    id: AlgorithmID::ECDSA_P256_SHA384_ASN1,
};

/// *Not recommended*. Verification of ASN.1 DER-encoded ECDSA signatures using
/// the P-384 curve and SHA-256.
///
/// In most situations, P-256 should be used only with SHA-256 and P-384
/// should be used only with SHA-384. However, in some cases, particularly TLS
/// on the web, it is necessary to support P-256 with SHA-384 for compatibility
/// with widely-deployed implementations that do not follow these guidelines.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA256_ASN1: Algorithm = Algorithm {
    ops: &p384::PUBLIC_SCALAR_OPS,
    digest_alg: &digest::SHA256,
    split_rs: split_rs_asn1,
    id: AlgorithmID::ECDSA_P384_SHA256_ASN1,
};

/// Verification of ASN.1 DER-encoded ECDSA signatures using the P-384 curve
/// and SHA-384.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA384_ASN1: Algorithm = Algorithm {
    ops: &p384::PUBLIC_SCALAR_OPS,
    digest_alg: &digest::SHA384,
    split_rs: split_rs_asn1,
    id: AlgorithmID::ECDSA_P384_SHA384_ASN1,
};

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test;

    #[test]
    fn test_digest_based_test_vectors() {
        test::run(
            test_file!("../../../../crypto/fipsmodule/ecdsa/ecdsa_verify_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let curve_name = test_case.consume_string("Curve");

                let public_key = {
                    let mut public_key = Vec::new();
                    public_key.push(0x04);
                    public_key.extend(&test_case.consume_bytes("X"));
                    public_key.extend(&test_case.consume_bytes("Y"));
                    public_key
                };

                let digest = test_case.consume_bytes("Digest");

                let sig = {
                    let mut sig = Vec::new();
                    sig.extend(&test_case.consume_bytes("R"));
                    sig.extend(&test_case.consume_bytes("S"));
                    sig
                };

                let invalid = test_case.consume_optional_string("Invalid");

                let alg = match curve_name.as_str() {
                    "P-256" => &ECDSA_P256_SHA256_FIXED,
                    "P-384" => &ECDSA_P384_SHA384_FIXED,
                    _ => {
                        panic!("Unsupported curve: {}", curve_name);
                    },
                };

                let digest = super::super::digest_scalar::digest_bytes_scalar(
                    &alg.ops.scalar_ops,
                    &digest[..],
                );
                let actual_result = alg.verify_digest(
                    untrusted::Input::from(&public_key[..]),
                    digest,
                    untrusted::Input::from(&sig[..]),
                );
                assert_eq!(actual_result.is_ok(), invalid.is_none());

                Ok(())
            },
        );
    }
}