1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! HMAC-based Extract-and-Expand Key Derivation Function.
//!
//! HKDF is specified in [RFC 5869].
//!
//! In most situations, it is best to use `extract_and_expand` to do both the
//! HKDF-Extract and HKDF-Expand as one atomic operation. It is only necessary
//! to use the separate `expand` and `extract` functions if a single derived
//! `PRK` (defined in RFC 5869) is used more than once.
//!
//! Salts have type `hmac::SigningKey` instead of `&[u8]` because they are
//! frequently used for multiple HKDF operations, and it is more efficient to
//! construct the `SigningKey` once and reuse it. Given a digest algorithm
//! `digest_alg` and a salt `salt: &[u8]`, the `SigningKey` should be
//! constructed as `hmac::SigningKey::new(digest_alg, salt)`.
//!
//! [RFC 5869]: https://tools.ietf.org/html/rfc5869
use crate::hmac;
/// Fills `out` with the output of the HKDF Extract-and-Expand operation for
/// the given inputs.
///
/// `extract_and_expand` is exactly equivalent to:
///
/// ```
/// # use ring::{hkdf, hmac};
/// # fn foo(salt: &hmac::SigningKey, secret: &[u8], info: &[u8],
/// # out: &mut [u8]) {
/// let prk = hkdf::extract(salt, secret);
/// hkdf::expand(&prk, info, out)
/// # }
/// ```
///
/// See the documentation for `extract` and `expand` for details.
///
/// # Panics
///
/// `extract_and_expand` panics if `expand` panics.
pub fn extract_and_expand(salt: &hmac::SigningKey, secret: &[u8], info: &[u8], out: &mut [u8]) {
let prk = extract(salt, secret);
expand(&prk, info, out)
}
/// The HKDF-Extract operation.
///
/// | Parameter | RFC 5869 Term
/// |---------------------------|--------------
/// | `salt.digest_algorithm()` | Hash
/// | `secret` | IKM (Input Keying Material)
/// | [return value] | PRK
pub fn extract(salt: &hmac::SigningKey, secret: &[u8]) -> hmac::SigningKey {
// The spec says that if no salt is provided then a key of
// `digest_alg.output_len` bytes of zeros is used. But, HMAC keys are
// already zero-padded to the block length, which is larger than the output
// length of the extract step (the length of the digest). Consequently, the
// `SigningKey` constructor will automatically do the right thing for a
// zero-length string.
let prk = hmac::sign(salt, secret);
hmac::SigningKey::new(salt.digest_algorithm(), prk.as_ref())
}
/// Fills `out` with the output of the HKDF-Expand operation for the given
/// inputs.
///
/// `prk` should be the return value of an earlier call to `extract`.
///
/// | Parameter | RFC 5869 Term
/// |------------|--------------
/// | prk | PRK
/// | info | info
/// | out | OKM (Output Keying Material)
/// | out.len() | L (Length of output keying material in bytes)
///
/// # Panics
///
/// `expand` panics if the requested output length is larger than 255 times the
/// size of the digest algorithm, i.e. if
/// `out.len() > 255 * salt.digest_algorithm().output_len`. This is the limit
/// imposed by the HKDF specification, and is necessary to prevent overflow of
/// the 8-bit iteration counter in the expansion step.
pub fn expand(prk: &hmac::SigningKey, info: &[u8], out: &mut [u8]) {
let digest_alg = prk.digest_algorithm();
assert!(out.len() <= 255 * digest_alg.output_len);
assert!(digest_alg.block_len >= digest_alg.output_len);
let mut ctx = hmac::SigningContext::with_key(prk);
let mut n = 1u8;
let mut pos = 0;
loop {
ctx.update(info);
ctx.update(&[n]);
let t = ctx.sign();
// Append `t` to the output.
let to_copy = if out.len() - pos < digest_alg.output_len {
out.len() - pos
} else {
digest_alg.output_len
};
let t_bytes = t.as_ref();
for i in 0..to_copy {
out[pos + i] = t_bytes[i];
}
if to_copy < digest_alg.output_len {
break;
}
pos += digest_alg.output_len;
ctx = hmac::SigningContext::with_key(prk);
ctx.update(t_bytes);
n += 1;
}
}