1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Testing framework.
//!
//! Unlike the rest of *ring*, this testing framework uses panics pretty
//! liberally. It was originally designed for internal use--it drives most of
//! *ring*'s internal tests, and so it is optimized for getting *ring*'s tests
//! written quickly at the expense of some usability. The documentation is
//! lacking. The best way to learn it is to look at some examples. The digest
//! tests are the most complicated because they use named sections. Other tests
//! avoid named sections and so are easier to understand.
//!
//! # Examples
//!
//! ## Writing Tests
//!
//! Input files look like this:
//!
//! ```text
//! # This is a comment.
//!
//! HMAC = SHA1
//! Input = "My test data"
//! Key = ""
//! Output = 61afdecb95429ef494d61fdee15990cabf0826fc
//!
//! HMAC = SHA256
//! Input = "Sample message for keylen<blocklen"
//! Key = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F
//! Output = A28CF43130EE696A98F14A37678B56BCFCBDD9E5CF69717FECF5480F0EBDF790
//! ```
//!
//! Test cases are separated with blank lines. Note how the bytes of the `Key`
//! attribute are specified as a quoted string in the first test case and as
//! hex in the second test case; you can use whichever form is more convenient
//! and you can mix and match within the same file. The empty sequence of bytes
//! can only be represented with the quoted string form (`""`).
//!
//! Here's how you would consume the test data:
//!
//! ```ignore
//! use ring::test;
//!
//! test::run(test::test_file!("hmac_tests.txt"), |section, test_case| {
//!     assert_eq!(section, ""); // This test doesn't use named sections.
//!
//!     let digest_alg = test_case.consume_digest_alg("HMAC");
//!     let input = test_case.consume_bytes("Input");
//!     let key = test_case.consume_bytes("Key");
//!     let output = test_case.consume_bytes("Output");
//!
//!     // Do the actual testing here
//! });
//! ```
//!
//! Note that `consume_digest_alg` automatically maps the string "SHA1" to a
//! reference to `digest::SHA1`, "SHA256" to `digest::SHA256`, etc.
//!
//! ## Output When a Test Fails
//!
//! When a test case fails, the framework automatically prints out the test
//! case. If the test case failed with a panic, then the backtrace of the panic
//! will be printed too. For example, let's say the failing test case looks
//! like this:
//!
//! ```text
//! Curve = P-256
//! a = 2b11cb945c8cf152ffa4c9c2b1c965b019b35d0b7626919ef0ae6cb9d232f8af
//! b = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
//! r = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
//! ```
//! If the test fails, this will be printed (if `$RUST_BACKTRACE` is `1`):
//!
//! ```text
//! src/example_tests.txt: Test panicked.
//! Curve = P-256
//! a = 2b11cb945c8cf152ffa4c9c2b1c965b019b35d0b7626919ef0ae6cb9d232f8af
//! b = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
//! r = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
//! thread 'example_test' panicked at 'Test failed.', src\test.rs:206
//! stack backtrace:
//!    0:     0x7ff654a05c7c - std::rt::lang_start::h61f4934e780b4dfc
//!    1:     0x7ff654a04f32 - std::rt::lang_start::h61f4934e780b4dfc
//!    2:     0x7ff6549f505d - std::panicking::rust_panic_with_hook::hfe203e3083c2b544
//!    3:     0x7ff654a0825b - rust_begin_unwind
//!    4:     0x7ff6549f63af - std::panicking::begin_panic_fmt::h484cd47786497f03
//!    5:     0x7ff654a07e9b - rust_begin_unwind
//!    6:     0x7ff654a0ae95 - core::panicking::panic_fmt::h257ceb0aa351d801
//!    7:     0x7ff654a0b190 - core::panicking::panic::h4bb1497076d04ab9
//!    8:     0x7ff65496dc41 - from_file<closure>
//!                         at C:\Users\Example\example\<core macros>:4
//!    9:     0x7ff65496d49c - example_test
//!                         at C:\Users\Example\example\src\example.rs:652
//!   10:     0x7ff6549d192a - test::stats::Summary::new::ha139494ed2e4e01f
//!   11:     0x7ff6549d51a2 - test::stats::Summary::new::ha139494ed2e4e01f
//!   12:     0x7ff654a0a911 - _rust_maybe_catch_panic
//!   13:     0x7ff6549d56dd - test::stats::Summary::new::ha139494ed2e4e01f
//!   14:     0x7ff654a03783 - std::sys::thread::Thread::new::h2b08da6cd2517f79
//!   15:     0x7ff968518101 - BaseThreadInitThunk
//! ```
//!
//! Notice that the output shows the name of the data file
//! (`src/example_tests.txt`), the test inputs that led to the failure, and the
//! stack trace to the line in the test code that panicked: entry 9 in the
//! stack trace pointing to line 652 of the file `example.rs`.

#[cfg(feature = "use_heap")]
use crate::bits;

use crate::{digest, error};

use core;
use std::{self, string::String, vec::Vec};

/// `compile_time_assert_clone::<T>();` fails to compile if `T` doesn't
/// implement `Clone`.
pub fn compile_time_assert_clone<T: Clone>() {}

/// `compile_time_assert_copy::<T>();` fails to compile if `T` doesn't
/// implement `Copy`.
pub fn compile_time_assert_copy<T: Copy>() {}

/// `compile_time_assert_send::<T>();` fails to compile if `T` doesn't
/// implement `Send`.
pub fn compile_time_assert_send<T: Send>() {}

/// `compile_time_assert_sync::<T>();` fails to compile if `T` doesn't
/// implement `Sync`.
pub fn compile_time_assert_sync<T: Sync>() {}

/// `compile_time_assert_debug::<T>();` fails to compile if `T` doesn't
/// implement `Debug`.
pub fn compile_time_assert_debug<T: core::fmt::Debug>() {}

/// A test case. A test case consists of a set of named attributes. Every
/// attribute in the test case must be consumed exactly once; this helps catch
/// typos and omissions.
#[derive(Debug)]
pub struct TestCase {
    attributes: Vec<(String, String, bool)>,
}

impl TestCase {
    /// Maps the string "true" to true and the string "false" to false.
    pub fn consume_bool(&mut self, key: &str) -> bool {
        match self.consume_string(key).as_ref() {
            "true" => true,
            "false" => false,
            s => panic!("Invalid bool value: {}", s),
        }
    }

    /// Maps the strings "SHA1", "SHA256", "SHA384", and "SHA512" to digest
    /// algorithms, maps "SHA224" to `None`, and panics on other (erroneous)
    /// inputs. "SHA224" is mapped to None because *ring* intentionally does
    /// not support SHA224, but we need to consume test vectors from NIST that
    /// have SHA224 vectors in them.
    pub fn consume_digest_alg(&mut self, key: &str) -> Option<&'static digest::Algorithm> {
        let name = self.consume_string(key);
        match name.as_ref() {
            "SHA1" => Some(&digest::SHA1),
            "SHA224" => None, // We actively skip SHA-224 support.
            "SHA256" => Some(&digest::SHA256),
            "SHA384" => Some(&digest::SHA384),
            "SHA512" => Some(&digest::SHA512),
            "SHA512_256" => Some(&digest::SHA512_256),
            _ => panic!("Unsupported digest algorithm: {}", name),
        }
    }

    /// Returns the value of an attribute that is encoded as a sequence of an
    /// even number of hex digits, or as a double-quoted UTF-8 string. The
    /// empty (zero-length) value is represented as "".
    pub fn consume_bytes(&mut self, key: &str) -> Vec<u8> {
        let s = self.consume_string(key);
        if s.starts_with('\"') {
            // The value is a quoted UTF-8 string.

            let mut bytes = Vec::with_capacity(s.as_bytes().len() - 2);
            let mut s = s.as_bytes().iter().skip(1);
            loop {
                let b = match s.next() {
                    Some(b'\\') => {
                        match s.next() {
                            // We don't allow all octal escape sequences, only "\0" for null.
                            Some(b'0') => 0u8,
                            Some(b't') => b'\t',
                            Some(b'n') => b'\n',
                            // "\xHH"
                            Some(b'x') => {
                                let hi = s.next().expect("Invalid hex escape sequence in string.");
                                let lo = s.next().expect("Invalid hex escape sequence in string.");
                                if let (Ok(hi), Ok(lo)) = (from_hex_digit(*hi), from_hex_digit(*lo))
                                {
                                    (hi << 4) | lo
                                } else {
                                    panic!("Invalid hex escape sequence in string.");
                                }
                            },
                            _ => {
                                panic!("Invalid hex escape sequence in string.");
                            },
                        }
                    },
                    Some(b'"') => {
                        if s.next().is_some() {
                            panic!("characters after the closing quote of a quoted string.");
                        }
                        break;
                    },
                    Some(b) => *b,
                    None => panic!("Missing terminating '\"' in string literal."),
                };
                bytes.push(b);
            }
            bytes
        } else {
            // The value is hex encoded.
            match from_hex(&s) {
                Ok(s) => s,
                Err(err_str) => {
                    panic!("{} in {}", err_str, s);
                },
            }
        }
    }

    /// Returns the value of an attribute that is an integer, in decimal
    /// notation.
    pub fn consume_usize(&mut self, key: &str) -> usize {
        let s = self.consume_string(key);
        s.parse::<usize>().unwrap()
    }

    /// Returns the value of an attribute that is an integer, in decimal
    /// notation, as a bit length.
    #[cfg(feature = "use_heap")]
    pub fn consume_usize_bits(&mut self, key: &str) -> bits::BitLength {
        let s = self.consume_string(key);
        let bits = s.parse::<usize>().unwrap();
        bits::BitLength::from_usize_bits(bits)
    }

    /// Returns the raw value of an attribute, without any unquoting or
    /// other interpretation.
    pub fn consume_string(&mut self, key: &str) -> String {
        self.consume_optional_string(key)
            .unwrap_or_else(|| panic!("No attribute named \"{}\"", key))
    }

    /// Like `consume_string()` except it returns `None` if the test case
    /// doesn't have the attribute.
    pub fn consume_optional_string(&mut self, key: &str) -> Option<String> {
        for (name, value, consumed) in &mut self.attributes {
            if key == name {
                if *consumed {
                    panic!("Attribute {} was already consumed", key);
                }
                *consumed = true;
                return Some(value.clone());
            }
        }
        None
    }
}

/// References a test input file.
#[macro_export]
macro_rules! test_file {
    ($file_name:expr) => {
        crate::test::File {
            file_name: $file_name,
            contents: include_str!($file_name),
        }
    };
}

/// A test input file.
pub struct File<'a> {
    /// The name (path) of the file.
    pub file_name: &'a str,

    /// The contents of the file.
    pub contents: &'a str,
}

/// Parses test cases out of the given file, calling `f` on each vector until
/// `f` fails or until all the test vectors have been read. `f` can indicate
/// failure either by returning `Err()` or by panicking.
pub fn run<F>(test_file: File, mut f: F)
where
    F: FnMut(&str, &mut TestCase) -> Result<(), error::Unspecified>,
{
    let lines = &mut test_file.contents.lines();

    let mut current_section = String::from("");
    let mut failed = false;

    #[allow(box_pointers)]
    while let Some(mut test_case) = parse_test_case(&mut current_section, lines) {
        let result = std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
            f(&current_section, &mut test_case)
        }));
        let result = match result {
            Ok(Ok(())) => {
                if !test_case
                    .attributes
                    .iter()
                    .any(|&(_, _, consumed)| !consumed)
                {
                    Ok(())
                } else {
                    failed = true;
                    Err("Test didn't consume all attributes.")
                }
            },
            Ok(Err(_)) => Err("Test returned Err(error::Unspecified)."),
            Err(_) => Err("Test panicked."),
        };

        if let Err(msg) = result {
            failed = true;

            println!("{}: {}", test_file.file_name, msg);
            for (name, value, consumed) in test_case.attributes {
                let consumed_str = if consumed { "" } else { " (unconsumed)" };
                println!("{}{} = {}", name, consumed_str, value);
            }
        };
    }

    if failed {
        panic!("Test failed.")
    }
}

/// Decode an string of hex digits into a sequence of bytes. The input must
/// have an even number of digits.
pub fn from_hex(hex_str: &str) -> Result<Vec<u8>, String> {
    if hex_str.len() % 2 != 0 {
        return Err(String::from(
            "Hex string does not have an even number of digits",
        ));
    }

    let mut result = Vec::with_capacity(hex_str.len() / 2);
    for digits in hex_str.as_bytes().chunks(2) {
        let hi = from_hex_digit(digits[0])?;
        let lo = from_hex_digit(digits[1])?;
        result.push((hi * 0x10) | lo);
    }
    Ok(result)
}

fn from_hex_digit(d: u8) -> Result<u8, String> {
    if d >= b'0' && d <= b'9' {
        Ok(d - b'0')
    } else if d >= b'a' && d <= b'f' {
        Ok(d - b'a' + 10u8)
    } else if d >= b'A' && d <= b'F' {
        Ok(d - b'A' + 10u8)
    } else {
        Err(format!("Invalid hex digit '{}'", d as char))
    }
}

fn parse_test_case<'a>(
    current_section: &mut String, lines: &mut Iterator<Item = &'a str>,
) -> Option<TestCase> {
    let mut attributes = Vec::new();

    let mut is_first_line = true;
    loop {
        let line = lines.next();

        if cfg!(feature = "test_logging") {
            if let Some(text) = &line {
                println!("Line: {}", text);
            }
        }

        match line {
            // If we get to EOF when we're not in the middle of a test case,
            // then we're done.
            None if is_first_line => {
                return None;
            },

            // End of the file on a non-empty test cases ends the test case.
            None => {
                return Some(TestCase { attributes });
            },

            // A blank line ends a test case if the test case isn't empty.
            Some(ref line) if line.is_empty() => {
                if !is_first_line {
                    return Some(TestCase { attributes });
                }
                // Ignore leading blank lines.
            },

            // Comments start with '#'; ignore them.
            Some(ref line) if line.starts_with('#') => (),

            Some(ref line) if line.starts_with('[') => {
                assert!(is_first_line);
                assert!(line.ends_with(']'));
                current_section.truncate(0);
                current_section.push_str(line);
                let _ = current_section.pop();
                let _ = current_section.remove(0);
            },

            Some(ref line) => {
                is_first_line = false;

                let parts: Vec<&str> = line.splitn(2, " = ").collect();
                if parts.len() != 2 {
                    panic!("Syntax error: Expected Key = Value.");
                };

                let key = parts[0].trim();
                let value = parts[1].trim();

                // Don't allow the value to be ommitted. An empty value can be
                // represented as an empty quoted string.
                assert_ne!(value.len(), 0);

                // Checking is_none() ensures we don't accept duplicate keys.
                attributes.push((String::from(key), String::from(value), false));
            },
        }
    }
}

/// Deterministic implementations of `ring::rand::SecureRandom`.
///
/// These implementations are particularly useful for testing implementations
/// of randomized algorithms & protocols using known-answer-tests where the
/// test vectors contain the random seed to use. They are also especially
/// useful for some types of fuzzing.
#[allow(missing_docs)]
pub mod rand {
    use crate::{error, polyfill, rand, sealed};
    use core;

    /// An implementation of `SecureRandom` that always fills the output slice
    /// with the given byte.
    #[derive(Debug)]
    pub struct FixedByteRandom {
        pub byte: u8,
    }

    impl rand::SecureRandom for FixedByteRandom {
        fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
            polyfill::slice::fill(dest, self.byte);
            Ok(())
        }
    }

    /// An implementation of `SecureRandom` that always fills the output slice
    /// with the slice in `bytes`. The length of the slice given to `slice`
    /// must match exactly.
    #[derive(Debug)]
    pub struct FixedSliceRandom<'a> {
        pub bytes: &'a [u8],
    }

    impl<'a> rand::SecureRandom for FixedSliceRandom<'a> {
        fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
            dest.copy_from_slice(self.bytes);
            Ok(())
        }
    }

    /// An implementation of `SecureRandom` where each slice in `bytes` is a
    /// test vector for one call to `fill()`. *Not thread-safe.*
    ///
    /// The first slice in `bytes` is the output for the first call to
    /// `fill()`, the second slice is the output for the second call to
    /// `fill()`, etc. The output slice passed to `fill()` must have exactly
    /// the length of the corresponding entry in `bytes`. `current` must be
    /// initialized to zero. `fill()` must be called exactly once for each
    /// entry in `bytes`.
    #[derive(Debug)]
    pub struct FixedSliceSequenceRandom<'a> {
        /// The value.
        pub bytes: &'a [&'a [u8]],
        pub current: core::cell::UnsafeCell<usize>,
    }

    impl<'a> rand::SecureRandom for FixedSliceSequenceRandom<'a> {
        fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
            let current = unsafe { *self.current.get() };
            let bytes = self.bytes[current];
            dest.copy_from_slice(bytes);
            // Remember that we returned this slice and prepare to return
            // the next one, if any.
            unsafe { *self.current.get() += 1 };
            Ok(())
        }
    }

    impl<'a> Drop for FixedSliceSequenceRandom<'a> {
        fn drop(&mut self) {
            // Ensure that `fill()` was called exactly the right number of
            // times.
            assert_eq!(unsafe { *self.current.get() }, self.bytes.len());
        }
    }

    impl sealed::Sealed for FixedByteRandom {}
    impl<'a> sealed::Sealed for FixedSliceRandom<'a> {}
    impl<'a> sealed::Sealed for FixedSliceSequenceRandom<'a> {}

}

#[cfg(test)]
mod tests {
    use crate::{error, test};

    #[test]
    fn one_ok() {
        test::run(test_file!("test_1_tests.txt"), |_, test_case| {
            let _ = test_case.consume_string("Key");
            Ok(())
        });
    }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn one_err() {
        test::run(test_file!("test_1_tests.txt"), |_, test_case| {
            let _ = test_case.consume_string("Key");
            Err(error::Unspecified)
        });
    }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn one_panics() {
        test::run(test_file!("test_1_tests.txt"), |_, test_case| {
            let _ = test_case.consume_string("Key");
            panic!("");
        });
    }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn first_err() { err_one(0) }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn middle_err() { err_one(1) }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn last_err() { err_one(2) }

    fn err_one(test_to_fail: usize) {
        let mut n = 0;
        test::run(test_file!("test_3_tests.txt"), |_, test_case| {
            let _ = test_case.consume_string("Key");
            let result = if n != test_to_fail {
                Ok(())
            } else {
                Err(error::Unspecified)
            };
            n += 1;
            result
        });
    }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn first_panic() { panic_one(0) }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn middle_panic() { panic_one(1) }

    #[test]
    #[should_panic(expected = "Test failed.")]
    fn last_panic() { panic_one(2) }

    fn panic_one(test_to_fail: usize) {
        let mut n = 0;
        test::run(test_file!("test_3_tests.txt"), |_, test_case| {
            let _ = test_case.consume_string("Key");
            if n == test_to_fail {
                panic!("Oh Noes!");
            };
            n += 1;
            Ok(())
        });
    }

    #[test]
    #[should_panic(expected = "Syntax error: Expected Key = Value.")]
    fn syntax_error() { test::run(test_file!("test_1_syntax_error_tests.txt"), |_, _| Ok(())); }
}