1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
use crate::msgs::enums::{SignatureAlgorithm, SignatureScheme};
use crate::util;
use crate::key;
use crate::error::TLSError;

use untrusted;

use ring::{self, signature::{self, EcdsaKeyPair, RsaKeyPair}};
use webpki;

use std::sync::Arc;
use std::mem;

/// An abstract signing key.
pub trait SigningKey : Send + Sync {
    /// Choose a `SignatureScheme` from those offered.
    ///
    /// Expresses the choice something that implements `Signer`,
    /// using the chosen scheme.
    fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<Signer>>;

    /// What kind of key we have.
    fn algorithm(&self) -> SignatureAlgorithm;
}

/// A thing that can sign a message.
pub trait Signer : Send + Sync {
    /// Signs `message` using the selected scheme.
    fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError>;

    /// Reveals which scheme will be used when you call `sign()`.
    fn get_scheme(&self) -> SignatureScheme;
}

/// A packaged-together certificate chain, matching `SigningKey` and
/// optional stapled OCSP response and/or SCT.
#[derive(Clone)]
pub struct CertifiedKey {
    /// The certificate chain.
    pub cert: Vec<key::Certificate>,

    /// The certified key.
    pub key: Arc<Box<SigningKey>>,

    /// An optional OCSP response from the certificate issuer,
    /// attesting to its continued validity.
    pub ocsp: Option<Vec<u8>>,

    /// An optional collection of SCTs from CT logs, proving the
    /// certificate is included on those logs.  This must be
    /// a `SignedCertificateTimestampList` encoding; see RFC6962.
    pub sct_list: Option<Vec<u8>>,
}

impl CertifiedKey {
    /// Make a new CertifiedKey, with the given chain and key.
    ///
    /// The cert chain must not be empty. The first certificate in the chain
    /// must be the end-entity certificate.
    pub fn new(cert: Vec<key::Certificate>, key: Arc<Box<SigningKey>>) -> CertifiedKey {
        CertifiedKey {
            cert,
            key,
            ocsp: None,
            sct_list: None,
        }
    }

    /// The end-entity certificate.
    pub fn end_entity_cert(&self) -> Result<&key::Certificate, ()> {
        self.cert.get(0).ok_or(())
    }

    /// Steal ownership of the certificate chain.
    pub fn take_cert(&mut self) -> Vec<key::Certificate> {
        mem::replace(&mut self.cert, Vec::new())
    }

    /// Return true if there's an OCSP response.
    pub fn has_ocsp(&self) -> bool {
        self.ocsp.is_some()
    }

    /// Steal ownership of the OCSP response.
    pub fn take_ocsp(&mut self) -> Option<Vec<u8>> {
        mem::replace(&mut self.ocsp, None)
    }

    /// Return true if there's an SCT list.
    pub fn has_sct_list(&self) -> bool {
        self.sct_list.is_some()
    }

    /// Steal ownership of the SCT list.
    pub fn take_sct_list(&mut self) -> Option<Vec<u8>> {
        mem::replace(&mut self.sct_list, None)
    }

    /// Check the certificate chain for validity:
    /// - it should be non-empty list
    /// - the first certificate should be parsable as a x509v3,
    /// - the first certificate should quote the given server name
    ///   (if provided)
    ///
    /// These checks are not security-sensitive.  They are the
    /// *server* attempting to detect accidental misconfiguration.
    pub fn cross_check_end_entity_cert(&self, name: Option<webpki::DNSNameRef>) -> Result<(), TLSError> {
        // Always reject an empty certificate chain.
        let end_entity_cert = self.end_entity_cert().map_err(|()| {
            TLSError::General("No end-entity certificate in certificate chain".to_string())
        })?;

        // Reject syntactically-invalid end-entity certificates.
        let end_entity_cert = webpki::EndEntityCert::from(
            untrusted::Input::from(end_entity_cert.as_ref())).map_err(|_| {
                TLSError::General("End-entity certificate in certificate \
                                  chain is syntactically invalid".to_string())
        })?;

        if let Some(name) = name {
            // If SNI was offered then the certificate must be valid for
            // that hostname. Note that this doesn't fully validate that the
            // certificate is valid; it only validates that the name is one
            // that the certificate is valid for, if the certificate is
            // valid.
            if end_entity_cert.verify_is_valid_for_dns_name(name).is_err() {
                return Err(TLSError::General("The server certificate is not \
                                             valid for the given name".to_string()));
            }
        }

        Ok(())
    }
}

/// Parse `der` as any supported key encoding/type, returning
/// the first which works.
pub fn any_supported_type(der: &key::PrivateKey) -> Result<Box<SigningKey>, ()> {
    if let Ok(rsa) = RSASigningKey::new(der) {
        return Ok(Box::new(rsa));
    }

    any_ecdsa_type(der)
}

/// Parse `der` as any ECDSA key type, returning the first which works.
pub fn any_ecdsa_type(der: &key::PrivateKey) -> Result<Box<SigningKey>, ()> {
    if let Ok(ecdsa_p256) = SingleSchemeSigningKey::new(der,
                                                        SignatureScheme::ECDSA_NISTP256_SHA256,
                                                        &signature::ECDSA_P256_SHA256_ASN1_SIGNING) {
        return Ok(Box::new(ecdsa_p256));
    }

    if let Ok(ecdsa_p384) = SingleSchemeSigningKey::new(der,
                                                        SignatureScheme::ECDSA_NISTP384_SHA384,
                                                        &signature::ECDSA_P384_SHA384_ASN1_SIGNING) {
        return Ok(Box::new(ecdsa_p384));
    }

    Err(())
}

/// A `SigningKey` for RSA-PKCS1 or RSA-PSS
pub struct RSASigningKey {
    key: Arc<RsaKeyPair>,
}

static ALL_RSA_SCHEMES: &'static [SignatureScheme] = &[
     SignatureScheme::RSA_PSS_SHA512,
     SignatureScheme::RSA_PSS_SHA384,
     SignatureScheme::RSA_PSS_SHA256,
     SignatureScheme::RSA_PKCS1_SHA512,
     SignatureScheme::RSA_PKCS1_SHA384,
     SignatureScheme::RSA_PKCS1_SHA256,
];

impl RSASigningKey {
    /// Make a new `RSASigningKey` from a DER encoding, in either
    /// PKCS#1 or PKCS#8 format.
    pub fn new(der: &key::PrivateKey) -> Result<RSASigningKey, ()> {
        RsaKeyPair::from_der(untrusted::Input::from(&der.0))
            .or_else(|_| RsaKeyPair::from_pkcs8(untrusted::Input::from(&der.0)))
            .map(|s| {
                 RSASigningKey {
                     key: Arc::new(s),
                 }
            })
            .map_err(|_| ())
    }
}

impl SigningKey for RSASigningKey {
    fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<Signer>> {
        util::first_in_both(ALL_RSA_SCHEMES, offered)
            .map(|scheme| RSASigner::new(self.key.clone(), scheme))
    }

    fn algorithm(&self) -> SignatureAlgorithm {
        SignatureAlgorithm::RSA
    }
}

struct RSASigner {
    key: Arc<RsaKeyPair>,
    scheme: SignatureScheme,
    encoding: &'static signature::RsaEncoding
}

impl RSASigner {
    fn new(key: Arc<RsaKeyPair>, scheme: SignatureScheme) -> Box<Signer> {
        let encoding: &signature::RsaEncoding = match scheme {
            SignatureScheme::RSA_PKCS1_SHA256 => &signature::RSA_PKCS1_SHA256,
            SignatureScheme::RSA_PKCS1_SHA384 => &signature::RSA_PKCS1_SHA384,
            SignatureScheme::RSA_PKCS1_SHA512 => &signature::RSA_PKCS1_SHA512,
            SignatureScheme::RSA_PSS_SHA256 => &signature::RSA_PSS_SHA256,
            SignatureScheme::RSA_PSS_SHA384 => &signature::RSA_PSS_SHA384,
            SignatureScheme::RSA_PSS_SHA512 => &signature::RSA_PSS_SHA512,
            _ => unreachable!(),
        };

        Box::new(RSASigner { key, scheme, encoding })
    }
}

impl Signer for RSASigner {
    fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError> {
        let mut sig = vec![0; self.key.public_modulus_len()];

        let rng = ring::rand::SystemRandom::new();
        self.key.sign(self.encoding, &rng, message, &mut sig)
            .map(|_| sig)
            .map_err(|_| TLSError::General("signing failed".to_string()))
    }

    fn get_scheme(&self) -> SignatureScheme {
        self.scheme
    }
}

/// A SigningKey that uses exactly one TLS-level SignatureScheme
/// and one ring-level signature::SigningAlgorithm.
///
/// Compare this to RSASigningKey, which for a particular key is
/// willing to sign with several algorithms.  This is quite poor
/// cryptography practice, but is necessary because a given RSA key
/// is expected to work in TLS1.2 (PKCS#1 signatures) and TLS1.3
/// (PSS signatures) -- nobody is willing to obtain certificates for
/// different protocol versions.
///
/// Currently this is only implemented for ECDSA keys.
struct SingleSchemeSigningKey {
    key: Arc<EcdsaKeyPair>,
    scheme: SignatureScheme,
}

impl SingleSchemeSigningKey {
    /// Make a new `ECDSASigningKey` from a DER encoding in PKCS#8 format,
    /// expecting a key usable with precisely the given signature scheme.
    pub fn new(der: &key::PrivateKey,
               scheme: SignatureScheme,
               sigalg: &'static signature::EcdsaSigningAlgorithm) -> Result<SingleSchemeSigningKey, ()> {
        EcdsaKeyPair::from_pkcs8(sigalg, untrusted::Input::from(&der.0))
            .map(|kp| SingleSchemeSigningKey { key: Arc::new(kp), scheme })
            .map_err(|_| ())
    }
}

impl SigningKey for SingleSchemeSigningKey {
    fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<Signer>> {
        if offered.contains(&self.scheme) {
            Some(Box::new(SingleSchemeSigner { key: self.key.clone(), scheme: self.scheme } ))
        } else {
            None
        }
    }

    fn algorithm(&self) -> SignatureAlgorithm {
        use crate::msgs::handshake::DecomposedSignatureScheme;
        self.scheme.sign()
    }
}

struct SingleSchemeSigner {
    key: Arc<EcdsaKeyPair>,
    scheme: SignatureScheme,
}

impl Signer for SingleSchemeSigner {
    fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError> {
        let rng = ring::rand::SystemRandom::new();
        self.key.sign(&rng, untrusted::Input::from(message))
            .map_err(|_| TLSError::General("signing failed".into()))
            .map(|sig| sig.as_ref().into())
    }

    fn get_scheme(&self) -> SignatureScheme {
        self.scheme
    }
}

/// The set of schemes we support for signatures and
/// that are allowed for TLS1.3.
pub fn supported_sign_tls13() -> &'static [SignatureScheme] {
    &[
        SignatureScheme::ECDSA_NISTP384_SHA384,
        SignatureScheme::ECDSA_NISTP256_SHA256,

        SignatureScheme::RSA_PSS_SHA512,
        SignatureScheme::RSA_PSS_SHA384,
        SignatureScheme::RSA_PSS_SHA256,

    ]
}