1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unreachable_pub
)]
#![doc(test(
    no_crate_inject,
    attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
))]

//! Pre-allocated storage for a uniform data type.
//!
//! `Slab` provides pre-allocated storage for a single data type. If many values
//! of a single type are being allocated, it can be more efficient to
//! pre-allocate the necessary storage. Since the size of the type is uniform,
//! memory fragmentation can be avoided. Storing, clearing, and lookup
//! operations become very cheap.
//!
//! While `Slab` may look like other Rust collections, it is not intended to be
//! used as a general purpose collection. The primary difference between `Slab`
//! and `Vec` is that `Slab` returns the key when storing the value.
//!
//! It is important to note that keys may be reused. In other words, once a
//! value associated with a given key is removed from a slab, that key may be
//! returned from future calls to `insert`.
//!
//! # Examples
//!
//! Basic storing and retrieval.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = slab.insert("hello");
//! let world = slab.insert("world");
//!
//! assert_eq!(slab[hello], "hello");
//! assert_eq!(slab[world], "world");
//!
//! slab[world] = "earth";
//! assert_eq!(slab[world], "earth");
//! ```
//!
//! Sometimes it is useful to be able to associate the key with the value being
//! inserted in the slab. This can be done with the `vacant_entry` API as such:
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = {
//!     let entry = slab.vacant_entry();
//!     let key = entry.key();
//!
//!     entry.insert((key, "hello"));
//!     key
//! };
//!
//! assert_eq!(hello, slab[hello].0);
//! assert_eq!("hello", slab[hello].1);
//! ```
//!
//! It is generally a good idea to specify the desired capacity of a slab at
//! creation time. Note that `Slab` will grow the internal capacity when
//! attempting to insert a new value once the existing capacity has been reached.
//! To avoid this, add a check.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::with_capacity(1024);
//!
//! // ... use the slab
//!
//! if slab.len() == slab.capacity() {
//!     panic!("slab full");
//! }
//!
//! slab.insert("the slab is not at capacity yet");
//! ```
//!
//! # Capacity and reallocation
//!
//! The capacity of a slab is the amount of space allocated for any future
//! values that will be inserted in the slab. This is not to be confused with
//! the *length* of the slab, which specifies the number of actual values
//! currently being inserted. If a slab's length is equal to its capacity, the
//! next value inserted into the slab will require growing the slab by
//! reallocating.
//!
//! For example, a slab with capacity 10 and length 0 would be an empty slab
//! with space for 10 more stored values. Storing 10 or fewer elements into the
//! slab will not change its capacity or cause reallocation to occur. However,
//! if the slab length is increased to 11 (due to another `insert`), it will
//! have to reallocate, which can be slow. For this reason, it is recommended to
//! use [`Slab::with_capacity`] whenever possible to specify how many values the
//! slab is expected to store.
//!
//! # Implementation
//!
//! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or
//! vacant. `Slab` maintains a stack of vacant slots using a linked list. To
//! find a vacant slot, the stack is popped. When a slot is released, it is
//! pushed onto the stack.
//!
//! If there are no more available slots in the stack, then `Vec::reserve(1)` is
//! called and a new slot is created.
//!
//! [`Slab::with_capacity`]: struct.Slab.html#with_capacity

#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std as alloc;

#[cfg(feature = "serde")]
mod serde;

use alloc::vec::{self, Vec};
use core::iter::{self, FromIterator, FusedIterator};
use core::{fmt, mem, ops, slice};

/// Pre-allocated storage for a uniform data type
///
/// See the [module documentation] for more details.
///
/// [module documentation]: index.html
#[derive(Clone)]
pub struct Slab<T> {
    // Chunk of memory
    entries: Vec<Entry<T>>,

    // Number of Filled elements currently in the slab
    len: usize,

    // Offset of the next available slot in the slab. Set to the slab's
    // capacity when the slab is full.
    next: usize,
}

impl<T> Default for Slab<T> {
    fn default() -> Self {
        Slab::new()
    }
}

/// A handle to a vacant entry in a `Slab`.
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
///     let entry = slab.vacant_entry();
///     let key = entry.key();
///
///     entry.insert((key, "hello"));
///     key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T> {
    slab: &'a mut Slab<T>,
    key: usize,
}

/// A consuming iterator over the values stored in a `Slab`
pub struct IntoIter<T> {
    entries: iter::Enumerate<vec::IntoIter<Entry<T>>>,
    len: usize,
}

/// An iterator over the values stored in the `Slab`
pub struct Iter<'a, T> {
    entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>,
    len: usize,
}

impl<'a, T> Clone for Iter<'a, T> {
    fn clone(&self) -> Self {
        Self {
            entries: self.entries.clone(),
            len: self.len,
        }
    }
}

/// A mutable iterator over the values stored in the `Slab`
pub struct IterMut<'a, T> {
    entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>,
    len: usize,
}

/// A draining iterator for `Slab`
pub struct Drain<'a, T> {
    inner: vec::Drain<'a, Entry<T>>,
    len: usize,
}

#[derive(Clone)]
enum Entry<T> {
    Vacant(usize),
    Occupied(T),
}

impl<T> Slab<T> {
    /// Construct a new, empty `Slab`.
    ///
    /// The function does not allocate and the returned slab will have no
    /// capacity until `insert` is called or capacity is explicitly reserved.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let slab: Slab<i32> = Slab::new();
    /// ```
    pub fn new() -> Slab<T> {
        Slab::with_capacity(0)
    }

    /// Construct a new, empty `Slab` with the specified capacity.
    ///
    /// The returned slab will be able to store exactly `capacity` without
    /// reallocating. If `capacity` is 0, the slab will not allocate.
    ///
    /// It is important to note that this function does not specify the *length*
    /// of the returned slab, but only the capacity. For an explanation of the
    /// difference between length and capacity, see [Capacity and
    /// reallocation](index.html#capacity-and-reallocation).
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// // The slab contains no values, even though it has capacity for more
    /// assert_eq!(slab.len(), 0);
    ///
    /// // These are all done without reallocating...
    /// for i in 0..10 {
    ///     slab.insert(i);
    /// }
    ///
    /// // ...but this may make the slab reallocate
    /// slab.insert(11);
    /// ```
    pub fn with_capacity(capacity: usize) -> Slab<T> {
        Slab {
            entries: Vec::with_capacity(capacity),
            next: 0,
            len: 0,
        }
    }

    /// Return the number of values the slab can store without reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let slab: Slab<i32> = Slab::with_capacity(10);
    /// assert_eq!(slab.capacity(), 10);
    /// ```
    pub fn capacity(&self) -> usize {
        self.entries.capacity()
    }

    /// Reserve capacity for at least `additional` more values to be stored
    /// without allocating.
    ///
    /// `reserve` does nothing if the slab already has sufficient capacity for
    /// `additional` more values. If more capacity is required, a new segment of
    /// memory will be allocated and all existing values will be copied into it.
    /// As such, if the slab is already very large, a call to `reserve` can end
    /// up being expensive.
    ///
    /// The slab may reserve more than `additional` extra space in order to
    /// avoid frequent reallocations. Use `reserve_exact` instead to guarantee
    /// that only the requested space is allocated.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// slab.insert("hello");
    /// slab.reserve(10);
    /// assert!(slab.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        if self.capacity() - self.len >= additional {
            return;
        }
        let need_add = additional - (self.entries.len() - self.len);
        self.entries.reserve(need_add);
    }

    /// Reserve the minimum capacity required to store exactly `additional`
    /// more values.
    ///
    /// `reserve_exact` does nothing if the slab already has sufficient capacity
    /// for `additional` more values. If more capacity is required, a new segment
    /// of memory will be allocated and all existing values will be copied into
    /// it.  As such, if the slab is already very large, a call to `reserve` can
    /// end up being expensive.
    ///
    /// Note that the allocator may give the slab more space than it requests.
    /// Therefore capacity can not be relied upon to be precisely minimal.
    /// Prefer `reserve` if future insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// slab.insert("hello");
    /// slab.reserve_exact(10);
    /// assert!(slab.capacity() >= 11);
    /// ```
    pub fn reserve_exact(&mut self, additional: usize) {
        if self.capacity() - self.len >= additional {
            return;
        }
        let need_add = additional - (self.entries.len() - self.len);
        self.entries.reserve_exact(need_add);
    }

    /// Shrink the capacity of the slab as much as possible without invalidating keys.
    ///
    /// Because values cannot be moved to a different index, the slab cannot
    /// shrink past any stored values.
    /// It will drop down as close as possible to the length but the allocator may
    /// still inform the underlying vector that there is space for a few more elements.
    ///
    /// This function can take O(n) time even when the capacity cannot be reduced
    /// or the allocation is shrunk in place. Repeated calls run in O(1) though.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.shrink_to_fit();
    /// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
    /// ```
    ///
    /// The slab cannot shrink past the last present value even if previous
    /// values are removed:
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..4 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.remove(0);
    /// slab.remove(3);
    ///
    /// slab.shrink_to_fit();
    /// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        // Remove all vacant entries after the last occupied one, so that
        // the capacity can be reduced to what is actually needed.
        // If the slab is empty the vector can simply be cleared, but that
        // optimization would not affect time complexity when T: Drop.
        let len_before = self.entries.len();
        while let Some(&Entry::Vacant(_)) = self.entries.last() {
            self.entries.pop();
        }

        // Removing entries breaks the list of vacant entries,
        // so it must be repaired
        if self.entries.len() != len_before {
            // Some vacant entries were removed, so the list now likely¹
            // either contains references to the removed entries, or has an
            // invalid end marker. Fix this by recreating the list.
            self.recreate_vacant_list();
            // ¹: If the removed entries formed the tail of the list, with the
            // most recently popped entry being the head of them, (so that its
            // index is now the end marker) the list is still valid.
            // Checking for that unlikely scenario of this infrequently called
            // is not worth the code complexity.
        }

        self.entries.shrink_to_fit();
    }

    /// Iterate through all entries to recreate and repair the vacant list.
    /// self.len must be correct and is not modified.
    fn recreate_vacant_list(&mut self) {
        self.next = self.entries.len();
        // We can stop once we've found all vacant entries
        let mut remaining_vacant = self.entries.len() - self.len;
        // Iterate in reverse order so that lower keys are at the start of
        // the vacant list. This way future shrinks are more likely to be
        // able to remove vacant entries.
        for (i, entry) in self.entries.iter_mut().enumerate().rev() {
            if remaining_vacant == 0 {
                break;
            }
            if let Entry::Vacant(ref mut next) = *entry {
                *next = self.next;
                self.next = i;
                remaining_vacant -= 1;
            }
        }
    }

    /// Reduce the capacity as much as possible, changing the key for elements when necessary.
    ///
    /// To allow updating references to the elements which must be moved to a new key,
    /// this function takes a closure which is called before moving each element.
    /// The second and third parameters to the closure are the current key and
    /// new key respectively.
    /// In case changing the key for one element turns out not to be possible,
    /// the move can be cancelled by returning `false` from the closure.
    /// In that case no further attempts at relocating elements is made.
    /// If the closure unwinds, the slab will be left in a consistent state,
    /// but the value that the closure panicked on might be removed.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    ///
    /// let mut slab = Slab::with_capacity(10);
    /// let a = slab.insert('a');
    /// slab.insert('b');
    /// slab.insert('c');
    /// slab.remove(a);
    /// slab.compact(|&mut value, from, to| {
    ///     assert_eq!((value, from, to), ('c', 2, 0));
    ///     true
    /// });
    /// assert!(slab.capacity() >= 2 && slab.capacity() < 10);
    /// ```
    ///
    /// The value is not moved when the closure returns `Err`:
    ///
    /// ```
    /// # use slab::*;
    ///
    /// let mut slab = Slab::with_capacity(100);
    /// let a = slab.insert('a');
    /// let b = slab.insert('b');
    /// slab.remove(a);
    /// slab.compact(|&mut value, from, to| false);
    /// assert_eq!(slab.iter().next(), Some((b, &'b')));
    /// ```
    pub fn compact<F>(&mut self, mut rekey: F)
    where
        F: FnMut(&mut T, usize, usize) -> bool,
    {
        // If the closure unwinds, we need to restore a valid list of vacant entries
        struct CleanupGuard<'a, T> {
            slab: &'a mut Slab<T>,
            decrement: bool,
        }
        impl<T> Drop for CleanupGuard<'_, T> {
            fn drop(&mut self) {
                if self.decrement {
                    // Value was popped and not pushed back on
                    self.slab.len -= 1;
                }
                self.slab.recreate_vacant_list();
            }
        }
        let mut guard = CleanupGuard {
            slab: self,
            decrement: true,
        };

        let mut occupied_until = 0;
        // While there are vacant entries
        while guard.slab.entries.len() > guard.slab.len {
            // Find a value that needs to be moved,
            // by popping entries until we find an occupied one.
            // (entries cannot be empty because 0 is not greater than anything)
            if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() {
                // Found one, now find a vacant entry to move it to
                while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) {
                    occupied_until += 1;
                }
                // Let the caller try to update references to the key
                if !rekey(&mut value, guard.slab.entries.len(), occupied_until) {
                    // Changing the key failed, so push the entry back on at its old index.
                    guard.slab.entries.push(Entry::Occupied(value));
                    guard.decrement = false;
                    guard.slab.entries.shrink_to_fit();
                    return;
                    // Guard drop handles cleanup
                }
                // Put the value in its new spot
                guard.slab.entries[occupied_until] = Entry::Occupied(value);
                // ... and mark it as occupied (this is optional)
                occupied_until += 1;
            }
        }
        guard.slab.next = guard.slab.len;
        guard.slab.entries.shrink_to_fit();
        // Normal cleanup is not necessary
        mem::forget(guard);
    }

    /// Clear the slab of all values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.clear();
    /// assert!(slab.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.entries.clear();
        self.len = 0;
        self.next = 0;
    }

    /// Return the number of stored values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// assert_eq!(3, slab.len());
    /// ```
    pub fn len(&self) -> usize {
        self.len
    }

    /// Return `true` if there are no values stored in the slab.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// assert!(slab.is_empty());
    ///
    /// slab.insert(1);
    /// assert!(!slab.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Return an iterator over the slab.
    ///
    /// This function should generally be **avoided** as it is not efficient.
    /// Iterators must iterate over every slot in the slab even if it is
    /// vacant. As such, a slab with a capacity of 1 million but only one
    /// stored value must still iterate the million slots.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// let mut iterator = slab.iter();
    ///
    /// assert_eq!(iterator.next(), Some((0, &0)));
    /// assert_eq!(iterator.next(), Some((1, &1)));
    /// assert_eq!(iterator.next(), Some((2, &2)));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            entries: self.entries.iter().enumerate(),
            len: self.len,
        }
    }

    /// Return an iterator that allows modifying each value.
    ///
    /// This function should generally be **avoided** as it is not efficient.
    /// Iterators must iterate over every slot in the slab even if it is
    /// vacant. As such, a slab with a capacity of 1 million but only one
    /// stored value must still iterate the million slots.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let key1 = slab.insert(0);
    /// let key2 = slab.insert(1);
    ///
    /// for (key, val) in slab.iter_mut() {
    ///     if key == key1 {
    ///         *val += 2;
    ///     }
    /// }
    ///
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        IterMut {
            entries: self.entries.iter_mut().enumerate(),
            len: self.len,
        }
    }

    /// Return a reference to the value associated with the given key.
    ///
    /// If the given key is not associated with a value, then `None` is
    /// returned.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert("hello");
    ///
    /// assert_eq!(slab.get(key), Some(&"hello"));
    /// assert_eq!(slab.get(123), None);
    /// ```
    pub fn get(&self, key: usize) -> Option<&T> {
        match self.entries.get(key) {
            Some(&Entry::Occupied(ref val)) => Some(val),
            _ => None,
        }
    }

    /// Return a mutable reference to the value associated with the given key.
    ///
    /// If the given key is not associated with a value, then `None` is
    /// returned.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert("hello");
    ///
    /// *slab.get_mut(key).unwrap() = "world";
    ///
    /// assert_eq!(slab[key], "world");
    /// assert_eq!(slab.get_mut(123), None);
    /// ```
    pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
        match self.entries.get_mut(key) {
            Some(&mut Entry::Occupied(ref mut val)) => Some(val),
            _ => None,
        }
    }

    /// Return two mutable references to the values associated with the two
    /// given keys simultaneously.
    ///
    /// If any one of the given keys is not associated with a value, then `None`
    /// is returned.
    ///
    /// This function can be used to get two mutable references out of one slab,
    /// so that you can manipulate both of them at the same time, eg. swap them.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// use std::mem;
    ///
    /// let mut slab = Slab::new();
    /// let key1 = slab.insert(1);
    /// let key2 = slab.insert(2);
    /// let (value1, value2) = slab.get2_mut(key1, key2).unwrap();
    /// mem::swap(value1, value2);
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> {
        assert!(key1 != key2);

        let (entry1, entry2);

        if key1 > key2 {
            let (slice1, slice2) = self.entries.split_at_mut(key1);
            entry1 = slice2.get_mut(0);
            entry2 = slice1.get_mut(key2);
        } else {
            let (slice1, slice2) = self.entries.split_at_mut(key2);
            entry1 = slice1.get_mut(key1);
            entry2 = slice2.get_mut(0);
        }

        match (entry1, entry2) {
            (
                Some(&mut Entry::Occupied(ref mut val1)),
                Some(&mut Entry::Occupied(ref mut val2)),
            ) => Some((val1, val2)),
            _ => None,
        }
    }

    /// Return a reference to the value associated with the given key without
    /// performing bounds checking.
    ///
    /// For a safe alternative see [`get`](Slab::get).
    ///
    /// This function should be used with care.
    ///
    /// # Safety
    ///
    /// The key must be within bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert(2);
    ///
    /// unsafe {
    ///     assert_eq!(slab.get_unchecked(key), &2);
    /// }
    /// ```
    pub unsafe fn get_unchecked(&self, key: usize) -> &T {
        match *self.entries.get_unchecked(key) {
            Entry::Occupied(ref val) => val,
            _ => unreachable!(),
        }
    }

    /// Return a mutable reference to the value associated with the given key
    /// without performing bounds checking.
    ///
    /// For a safe alternative see [`get_mut`](Slab::get_mut).
    ///
    /// This function should be used with care.
    ///
    /// # Safety
    ///
    /// The key must be within bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert(2);
    ///
    /// unsafe {
    ///     let val = slab.get_unchecked_mut(key);
    ///     *val = 13;
    /// }
    ///
    /// assert_eq!(slab[key], 13);
    /// ```
    pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T {
        match *self.entries.get_unchecked_mut(key) {
            Entry::Occupied(ref mut val) => val,
            _ => unreachable!(),
        }
    }

    /// Return two mutable references to the values associated with the two
    /// given keys simultaneously without performing bounds checking and safety
    /// condition checking.
    ///
    /// For a safe alternative see [`get2_mut`](Slab::get2_mut).
    ///
    /// This function should be used with care.
    ///
    /// # Safety
    ///
    /// - Both keys must be within bounds.
    /// - The condition `key1 != key2` must hold.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// use std::mem;
    ///
    /// let mut slab = Slab::new();
    /// let key1 = slab.insert(1);
    /// let key2 = slab.insert(2);
    /// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) };
    /// mem::swap(value1, value2);
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) {
        debug_assert_ne!(key1, key2);
        let ptr = self.entries.as_mut_ptr();
        let ptr1 = ptr.add(key1);
        let ptr2 = ptr.add(key2);
        match (&mut *ptr1, &mut *ptr2) {
            (&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => {
                (val1, val2)
            }
            _ => unreachable!(),
        }
    }

    /// Get the key for an element in the slab.
    ///
    /// The reference must point to an element owned by the slab.
    /// Otherwise this function will panic.
    /// This is a constant-time operation because the key can be calculated
    /// from the reference with pointer arithmetic.
    ///
    /// # Panics
    ///
    /// This function will panic if the reference does not point to an element
    /// of the slab.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    ///
    /// let mut slab = Slab::new();
    /// let key = slab.insert(String::from("foo"));
    /// let value = &slab[key];
    /// assert_eq!(slab.key_of(value), key);
    /// ```
    ///
    /// Values are not compared, so passing a reference to a different location
    /// will result in a panic:
    ///
    /// ```should_panic
    /// # use slab::*;
    ///
    /// let mut slab = Slab::new();
    /// let key = slab.insert(0);
    /// let bad = &0;
    /// slab.key_of(bad); // this will panic
    /// unreachable!();
    /// ```
    pub fn key_of(&self, present_element: &T) -> usize {
        let element_ptr = present_element as *const T as usize;
        let base_ptr = self.entries.as_ptr() as usize;
        // Use wrapping subtraction in case the reference is bad
        let byte_offset = element_ptr.wrapping_sub(base_ptr);
        // The division rounds away any offset of T inside Entry
        // The size of Entry<T> is never zero even if T is due to Vacant(usize)
        let key = byte_offset / mem::size_of::<Entry<T>>();
        // Prevent returning unspecified (but out of bounds) values
        if key >= self.entries.len() {
            panic!("The reference points to a value outside this slab");
        }
        // The reference cannot point to a vacant entry, because then it would not be valid
        key
    }

    /// Insert a value in the slab, returning key assigned to the value.
    ///
    /// The returned key can later be used to retrieve or remove the value using indexed
    /// lookup and `remove`. Additional capacity is allocated if needed. See
    /// [Capacity and reallocation](index.html#capacity-and-reallocation).
    ///
    /// # Panics
    ///
    /// Panics if the number of elements in the vector overflows a `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert("hello");
    /// assert_eq!(slab[key], "hello");
    /// ```
    pub fn insert(&mut self, val: T) -> usize {
        let key = self.next;

        self.insert_at(key, val);

        key
    }

    /// Returns the key of the next vacant entry.
    ///
    /// This function returns the key of the vacant entry which  will be used
    /// for the next insertion. This is equivalent to
    /// `slab.vacant_entry().key()`, but it doesn't require mutable access.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// assert_eq!(slab.vacant_key(), 0);
    ///
    /// slab.insert(0);
    /// assert_eq!(slab.vacant_key(), 1);
    ///
    /// slab.insert(1);
    /// slab.remove(0);
    /// assert_eq!(slab.vacant_key(), 0);
    /// ```
    pub fn vacant_key(&self) -> usize {
        self.next
    }

    /// Return a handle to a vacant entry allowing for further manipulation.
    ///
    /// This function is useful when creating values that must contain their
    /// slab key. The returned `VacantEntry` reserves a slot in the slab and is
    /// able to query the associated key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> {
        VacantEntry {
            key: self.next,
            slab: self,
        }
    }

    fn insert_at(&mut self, key: usize, val: T) {
        self.len += 1;

        if key == self.entries.len() {
            self.entries.push(Entry::Occupied(val));
            self.next = key + 1;
        } else {
            self.next = match self.entries.get(key) {
                Some(&Entry::Vacant(next)) => next,
                _ => unreachable!(),
            };
            self.entries[key] = Entry::Occupied(val);
        }
    }

    /// Tries to remove the value associated with the given key,
    /// returning the value if the key existed.
    ///
    /// The key is then released and may be associated with future stored
    /// values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = slab.insert("hello");
    ///
    /// assert_eq!(slab.try_remove(hello), Some("hello"));
    /// assert!(!slab.contains(hello));
    /// ```
    pub fn try_remove(&mut self, key: usize) -> Option<T> {
        if let Some(entry) = self.entries.get_mut(key) {
            // Swap the entry at the provided value
            let prev = mem::replace(entry, Entry::Vacant(self.next));

            match prev {
                Entry::Occupied(val) => {
                    self.len -= 1;
                    self.next = key;
                    return val.into();
                }
                _ => {
                    // Woops, the entry is actually vacant, restore the state
                    *entry = prev;
                }
            }
        }
        None
    }

    /// Remove and return the value associated with the given key.
    ///
    /// The key is then released and may be associated with future stored
    /// values.
    ///
    /// # Panics
    ///
    /// Panics if `key` is not associated with a value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = slab.insert("hello");
    ///
    /// assert_eq!(slab.remove(hello), "hello");
    /// assert!(!slab.contains(hello));
    /// ```
    pub fn remove(&mut self, key: usize) -> T {
        self.try_remove(key).expect("invalid key")
    }

    /// Return `true` if a value is associated with the given key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = slab.insert("hello");
    /// assert!(slab.contains(hello));
    ///
    /// slab.remove(hello);
    ///
    /// assert!(!slab.contains(hello));
    /// ```
    pub fn contains(&self, key: usize) -> bool {
        match self.entries.get(key) {
            Some(&Entry::Occupied(_)) => true,
            _ => false,
        }
    }

    /// Retain only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(usize, &mut e)`
    /// returns false. This method operates in place and preserves the key
    /// associated with the retained values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let k1 = slab.insert(0);
    /// let k2 = slab.insert(1);
    /// let k3 = slab.insert(2);
    ///
    /// slab.retain(|key, val| key == k1 || *val == 1);
    ///
    /// assert!(slab.contains(k1));
    /// assert!(slab.contains(k2));
    /// assert!(!slab.contains(k3));
    ///
    /// assert_eq!(2, slab.len());
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(usize, &mut T) -> bool,
    {
        for i in 0..self.entries.len() {
            let keep = match self.entries[i] {
                Entry::Occupied(ref mut v) => f(i, v),
                _ => true,
            };

            if !keep {
                self.remove(i);
            }
        }
    }

    /// Return a draining iterator that removes all elements from the slab and
    /// yields the removed items.
    ///
    /// Note: Elements are removed even if the iterator is only partially
    /// consumed or not consumed at all.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let _ = slab.insert(0);
    /// let _ = slab.insert(1);
    /// let _ = slab.insert(2);
    ///
    /// {
    ///     let mut drain = slab.drain();
    ///
    ///     assert_eq!(Some(0), drain.next());
    ///     assert_eq!(Some(1), drain.next());
    ///     assert_eq!(Some(2), drain.next());
    ///     assert_eq!(None, drain.next());
    /// }
    ///
    /// assert!(slab.is_empty());
    /// ```
    pub fn drain(&mut self) -> Drain<'_, T> {
        let old_len = self.len;
        self.len = 0;
        self.next = 0;
        Drain {
            inner: self.entries.drain(..),
            len: old_len,
        }
    }
}

impl<T> ops::Index<usize> for Slab<T> {
    type Output = T;

    fn index(&self, key: usize) -> &T {
        match self.entries.get(key) {
            Some(&Entry::Occupied(ref v)) => v,
            _ => panic!("invalid key"),
        }
    }
}

impl<T> ops::IndexMut<usize> for Slab<T> {
    fn index_mut(&mut self, key: usize) -> &mut T {
        match self.entries.get_mut(key) {
            Some(&mut Entry::Occupied(ref mut v)) => v,
            _ => panic!("invalid key"),
        }
    }
}

impl<T> IntoIterator for Slab<T> {
    type Item = (usize, T);
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        IntoIter {
            entries: self.entries.into_iter().enumerate(),
            len: self.len,
        }
    }
}

impl<'a, T> IntoIterator for &'a Slab<T> {
    type Item = (usize, &'a T);
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut Slab<T> {
    type Item = (usize, &'a mut T);
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> IterMut<'a, T> {
        self.iter_mut()
    }
}

/// Create a slab from an iterator of key-value pairs.
///
/// If the iterator produces duplicate keys, the previous value is replaced with the later one.
/// The keys does not need to be sorted beforehand, and this function always
/// takes O(n) time.
/// Note that the returned slab will use space proportional to the largest key,
/// so don't use `Slab` with untrusted keys.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(2,'a'), (6,'b'), (7,'c')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert!(slab.capacity() >= 8);
/// assert_eq!(slab[2], 'a');
/// ```
///
/// With duplicate and unsorted keys:
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(20,'a'), (10,'b'), (11,'c'), (10,'d')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert_eq!(slab[10], 'd');
/// ```
impl<T> FromIterator<(usize, T)> for Slab<T> {
    fn from_iter<I>(iterable: I) -> Self
    where
        I: IntoIterator<Item = (usize, T)>,
    {
        let iterator = iterable.into_iter();
        let mut slab = Self::with_capacity(iterator.size_hint().0);

        let mut vacant_list_broken = false;
        let mut first_vacant_index = None;
        for (key, value) in iterator {
            if key < slab.entries.len() {
                // iterator is not sorted, might need to recreate vacant list
                if let Entry::Vacant(_) = slab.entries[key] {
                    vacant_list_broken = true;
                    slab.len += 1;
                }
                // if an element with this key already exists, replace it.
                // This is consistent with HashMap and BtreeMap
                slab.entries[key] = Entry::Occupied(value);
            } else {
                if first_vacant_index.is_none() && slab.entries.len() < key {
                    first_vacant_index = Some(slab.entries.len());
                }
                // insert holes as necessary
                while slab.entries.len() < key {
                    // add the entry to the start of the vacant list
                    let next = slab.next;
                    slab.next = slab.entries.len();
                    slab.entries.push(Entry::Vacant(next));
                }
                slab.entries.push(Entry::Occupied(value));
                slab.len += 1;
            }
        }
        if slab.len == slab.entries.len() {
            // no vacant entries, so next might not have been updated
            slab.next = slab.entries.len();
        } else if vacant_list_broken {
            slab.recreate_vacant_list();
        } else if let Some(first_vacant_index) = first_vacant_index {
            let next = slab.entries.len();
            match &mut slab.entries[first_vacant_index] {
                Entry::Vacant(n) => *n = next,
                _ => unreachable!(),
            }
        } else {
            unreachable!()
        }

        slab
    }
}

impl<T> fmt::Debug for Slab<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        if fmt.alternate() {
            fmt.debug_map().entries(self.iter()).finish()
        } else {
            fmt.debug_struct("Slab")
                .field("len", &self.len)
                .field("cap", &self.capacity())
                .finish()
        }
    }
}

impl<T> fmt::Debug for IntoIter<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("IntoIter")
            .field("remaining", &self.len)
            .finish()
    }
}

impl<T> fmt::Debug for Iter<'_, T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Iter")
            .field("remaining", &self.len)
            .finish()
    }
}

impl<T> fmt::Debug for IterMut<'_, T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("IterMut")
            .field("remaining", &self.len)
            .finish()
    }
}

impl<T> fmt::Debug for Drain<'_, T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Drain").finish()
    }
}

// ===== VacantEntry =====

impl<'a, T> VacantEntry<'a, T> {
    /// Insert a value in the entry, returning a mutable reference to the value.
    ///
    /// To get the key associated with the value, use `key` prior to calling
    /// `insert`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn insert(self, val: T) -> &'a mut T {
        self.slab.insert_at(self.key, val);

        match self.slab.entries.get_mut(self.key) {
            Some(&mut Entry::Occupied(ref mut v)) => v,
            _ => unreachable!(),
        }
    }

    /// Return the key associated with this entry.
    ///
    /// A value stored in this entry will be associated with this key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn key(&self) -> usize {
        self.key
    }
}

// ===== IntoIter =====

impl<T> Iterator for IntoIter<T> {
    type Item = (usize, T);

    fn next(&mut self) -> Option<Self::Item> {
        for (key, entry) in &mut self.entries {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some((key, entry)) = self.entries.next_back() {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for IntoIter<T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for IntoIter<T> {}

// ===== Iter =====

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = (usize, &'a T);

    fn next(&mut self) -> Option<Self::Item> {
        for (key, entry) in &mut self.entries {
            if let Entry::Occupied(ref v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for Iter<'_, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some((key, entry)) = self.entries.next_back() {
            if let Entry::Occupied(ref v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for Iter<'_, T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for Iter<'_, T> {}

// ===== IterMut =====

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = (usize, &'a mut T);

    fn next(&mut self) -> Option<Self::Item> {
        for (key, entry) in &mut self.entries {
            if let Entry::Occupied(ref mut v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for IterMut<'_, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some((key, entry)) = self.entries.next_back() {
            if let Entry::Occupied(ref mut v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for IterMut<'_, T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for IterMut<'_, T> {}

// ===== Drain =====

impl<T> Iterator for Drain<'_, T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        for entry in &mut self.inner {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some(v);
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for Drain<'_, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some(entry) = self.inner.next_back() {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some(v);
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for Drain<'_, T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for Drain<'_, T> {}