1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
//! Defines types for handlers, the primary building block of a Gotham application.
//!
//! A function can be used directly as a handler using one of the default implementations of
//! `Handler`, but the traits can also be implemented directly for greater control. See the
//! `Handler` trait for some examples of valid handlers.
use std::borrow::Cow;
use std::ops::Deref;
use std::panic::RefUnwindSafe;
use std::pin::Pin;
use std::sync::Arc;

use bytes::Bytes;
use futures::prelude::*;
use hyper::{Body, Response, StatusCode};
use mime::{self, Mime};

use crate::helpers::http::response;
use crate::state::State;

mod error;

/// Defines handlers for serving static assets.
pub mod assets;

pub use self::error::{HandlerError, MapHandlerError, MapHandlerErrorFuture};

/// A type alias for the results returned by async fns that can be passed to to_async.
pub type HandlerResult = std::result::Result<(State, Response<Body>), (State, HandlerError)>;

/// A type alias for the results returned by async fns that can be passed to to_async_borrowing.
pub type SimpleHandlerResult = std::result::Result<Response<Body>, HandlerError>;

/// A type alias for the trait objects returned by `HandlerService`.
///
/// When the `Future` resolves to an error, the `(State, HandlerError)` value is used to generate
/// an appropriate HTTP error response.
pub type HandlerFuture = dyn Future<Output = HandlerResult> + Send;

/// A `Handler` is an asynchronous function, taking a `State` value which represents the request
/// and related runtime state, and returns a future which resolves to a response.
///
/// This represents the common entry point for the parts of a Gotham application, and is used with
/// the `Router` API to describe how a request should be dispatched and handled.
///
/// The `Handler` is created and consumed by each request. In the most common case (a bare function
/// acting as a `Handler`) the `Handler + Copy` traits allow the `Handler` to be copied for each
/// request, and the copy consumed. For a closure or a custom handler, the `NewHandler`
/// implementation creates a `Handler` value for each request.
///
/// # Examples
///
/// The simplest kind of handler is a bare function which returns a synchronous response. This is
/// useful when we don't need to do any I/O before generating a response.
///
/// ```rust
/// # extern crate gotham;
/// # extern crate hyper;
/// #
/// # use hyper::{Body, Response};
/// # use gotham::handler::Handler;
/// # use gotham::state::State;
/// #
/// # fn main() {
/// fn my_handler(_state: State) -> (State, Response<Body>) {
///     // Implementation elided.
/// #   unimplemented!()
/// }
/// #
/// # fn assert_type<H>(_h: H) where H: Handler + Copy {}
/// # assert_type(my_handler);
/// # }
/// ```
///
/// An asynchronous handler returns a `HandlerFuture` that will resolve to the response. For
/// example, this allows I/O work to begin, and for the Gotham app to continue generating a
/// response once the work completes.
///
/// ```rust
/// # extern crate gotham;
/// # extern crate hyper;
/// #
/// # use std::pin::Pin;
/// #
/// # use gotham::handler::{Handler, HandlerFuture};
/// # use gotham::state::State;
/// #
/// # fn main() {
/// fn async_handler(_state: State) -> Pin<Box<HandlerFuture>> {
///     // Implementation elided.
/// #   unimplemented!()
/// }
/// #
/// # fn assert_type<H>(_h: H) where H: Handler + Copy {}
/// # assert_type(async_handler);
/// # }
/// ```
///
/// A closure can implement `Handler` automatically, in the same way as a bare function. When
/// constructing a `Handler` in this way, a wrapping closure must also be used to implement the
/// `NewHandler` trait.
///
/// ```rust
/// # extern crate gotham;
/// # extern crate hyper;
/// # extern crate futures;
/// #
/// # use gotham::handler::{NewHandler, IntoHandlerFuture};
/// # use gotham::helpers::http::response::create_empty_response;
/// # use gotham::state::State;
/// # use hyper::StatusCode;
/// #
/// # fn main() {
/// let new_handler = || {
///     let handler = |state: State| {
///         // Implementation elided.
/// #       let res = create_empty_response(&state, StatusCode::OK);
/// #       (state, res).into_handler_future()
///     };
///     Ok(handler)
/// };
///
/// // Pass `new_handler` to the router, using the `to_new_handler` API.
/// #
/// # fn assert_type<H>(_h: H) where H: NewHandler {}
/// # assert_type(new_handler);
/// # }
/// ```
///
/// A custom handler, which implements the `NewHandler` and `Handler` traits directly for greater
/// control. See the `NewHandler` trait for more examples of custom handlers.
///
/// ```rust
/// # extern crate gotham;
/// # extern crate hyper;
/// #
/// # use std::pin::Pin;
/// #
/// # use gotham::handler::{Handler, HandlerFuture, NewHandler};
/// # use gotham::state::State;
/// # use gotham::anyhow;
/// #
/// # fn main() {
/// #[derive(Copy, Clone)]
/// struct MyCustomHandler;
///
/// impl NewHandler for MyCustomHandler {
///     type Instance = Self;
///
///     fn new_handler(&self) -> anyhow::Result<Self::Instance> {
///         Ok(*self)
///     }
/// }
///
/// impl Handler for MyCustomHandler {
///     fn handle(self, _state: State) -> Pin<Box<HandlerFuture>> {
///         // Implementation elided.
/// #       unimplemented!()
///     }
/// }
/// #
/// # fn assert_type<H>(_h: H) where H: NewHandler {}
/// # assert_type(MyCustomHandler);
/// # }
/// ```
pub trait Handler: Send {
    /// Handles the request, returning a boxed future which resolves to a response.
    fn handle(self, state: State) -> Pin<Box<HandlerFuture>>;
}

impl<F, R> Handler for F
where
    F: FnOnce(State) -> R + Send,
    R: IntoHandlerFuture,
{
    fn handle(self, state: State) -> Pin<Box<HandlerFuture>> {
        self(state).into_handler_future()
    }
}

/// A type which is used to spawn new `Handler` values. When implementing a custom `Handler` type,
/// this is used to define how instances of the `Handler` are created.
///
/// The `Instance` associated type is usually `Self` in the simple case, but can be a different
/// type where greater control is needed over lifetimes.
///
/// # Examples
///
/// A custom handler which implements `NewHandler` by copying itself.
///
/// ```rust
/// # extern crate gotham;
/// # extern crate hyper;
/// #
/// # use std::pin::Pin;
/// #
/// # use gotham::handler::{Handler, HandlerFuture, NewHandler};
/// # use gotham::state::State;
/// # use gotham::anyhow;
/// #
/// # fn main() {
/// #[derive(Copy, Clone)]
/// struct MyCustomHandler;
///
/// impl NewHandler for MyCustomHandler {
///     type Instance = Self;
///
///     fn new_handler(&self) -> anyhow::Result<Self::Instance> {
///         Ok(*self)
///     }
/// }
///
/// impl Handler for MyCustomHandler {
///     fn handle(self, _state: State) -> Pin<Box<HandlerFuture>> {
///         // Implementation elided.
/// #       unimplemented!()
///     }
/// }
/// #
/// # fn assert_type<H>(_h: H) where H: NewHandler {}
/// # assert_type(MyCustomHandler);
/// # }
/// ```
///
/// A custom handler which implements `NewHandler` using a specific `Instance` type.
///
/// ```rust
/// # extern crate gotham;
/// # extern crate hyper;
/// #
/// # use std::pin::Pin;
/// #
/// # use gotham::handler::{Handler, HandlerFuture, NewHandler};
/// # use gotham::state::State;
/// # use gotham::anyhow;
/// #
/// # fn main() {
/// #[derive(Copy, Clone)]
/// struct MyValueInstantiatingHandler;
///
/// impl NewHandler for MyValueInstantiatingHandler {
///     type Instance = MyHandler;
///
///     fn new_handler(&self) -> anyhow::Result<Self::Instance> {
///         Ok(MyHandler)
///     }
/// }
///
/// struct MyHandler;
///
/// impl Handler for MyHandler {
///     fn handle(self, _state: State) -> Pin<Box<HandlerFuture>> {
///         // Implementation elided.
/// #       unimplemented!()
///     }
/// }
/// #
/// # fn assert_type<H>(_h: H) where H: NewHandler {}
/// # assert_type(MyValueInstantiatingHandler);
/// # }
/// ```
pub trait NewHandler: Send + Sync + RefUnwindSafe {
    /// The type of `Handler` created by the `NewHandler`.
    type Instance: Handler + Send;

    /// Create and return a new `Handler` value.
    fn new_handler(&self) -> anyhow::Result<Self::Instance>;
}

impl<F, H> NewHandler for F
where
    F: Fn() -> anyhow::Result<H> + Send + Sync + RefUnwindSafe,
    H: Handler + Send,
{
    type Instance = H;

    fn new_handler(&self) -> anyhow::Result<H> {
        self()
    }
}

impl<H> NewHandler for Arc<H>
where
    H: NewHandler,
{
    type Instance = H::Instance;

    fn new_handler(&self) -> anyhow::Result<Self::Instance> {
        self.deref().new_handler()
    }
}

/// Represents a type which can be converted into the future type returned by a `Handler`.
///
/// This is used to allow functions with different return types to satisfy the `Handler` trait
/// bound via the generic function implementation.
pub trait IntoHandlerFuture {
    /// Converts this value into a boxed future resolving to a state and response.
    fn into_handler_future(self) -> Pin<Box<HandlerFuture>>;
}

impl<T> IntoHandlerFuture for (State, T)
where
    T: IntoResponse,
{
    fn into_handler_future(self) -> Pin<Box<HandlerFuture>> {
        let (state, t) = self;
        let response = t.into_response(&state);
        future::ok((state, response)).boxed()
    }
}

impl IntoHandlerFuture for Pin<Box<HandlerFuture>> {
    fn into_handler_future(self) -> Pin<Box<HandlerFuture>> {
        self
    }
}

/// Represents a type which can be converted to a response. This trait is used in converting the
/// return type of a function into a response.
///
/// # Examples
///
/// ```rust
/// # #![allow(deprecated)] // TODO: Refactor this.
/// #
/// # extern crate gotham;
/// # extern crate hyper;
/// #
/// # use gotham::state::State;
/// # use gotham::pipeline::set::*;
/// # use gotham::router::Router;
/// # use gotham::router::route::{RouteImpl, Extractors, Delegation};
/// # use gotham::router::tree::Tree;
/// # use gotham::router::route::matcher::MethodOnlyRouteMatcher;
/// # use gotham::router::route::dispatch::DispatcherImpl;
/// # use gotham::handler::IntoResponse;
/// # use gotham::extractor::{NoopPathExtractor, NoopQueryStringExtractor};
/// # use gotham::router::response::finalizer::ResponseFinalizerBuilder;
/// # use hyper::Method;
/// # use hyper::StatusCode;
/// # use hyper::{Body, Response};
/// #
/// struct MyStruct {
///     value: String
/// }
///
/// impl MyStruct {
///     fn new() -> MyStruct {
///         // ...
/// #       MyStruct { value: "".to_owned() }
///     }
/// }
///
/// impl IntoResponse for MyStruct {
///     fn into_response(self, _state: &State) -> Response<Body> {
///         Response::builder()
///             .status(StatusCode::OK)
///             .body(self.value.into())
///             .unwrap()
///     }
/// }
///
/// fn handler(state: State) -> (State, MyStruct) {
///     (state, MyStruct::new())
/// }
///
/// # fn main() {
/// #   let mut tree = Tree::new();
/// #   let pipeline_set = finalize_pipeline_set(new_pipeline_set());
/// #   let finalizer = ResponseFinalizerBuilder::new().finalize();
/// #   let matcher = MethodOnlyRouteMatcher::new(vec![Method::GET]);
/// #   let dispatcher = DispatcherImpl::new(|| Ok(handler), (), pipeline_set);
/// #   let extractors: Extractors<NoopPathExtractor, NoopQueryStringExtractor> = Extractors::new();
/// #   let route = RouteImpl::new(matcher, Box::new(dispatcher), extractors, Delegation::Internal);
///     tree.add_route(Box::new(route));
///     Router::new(tree, finalizer);
/// # }
/// ```

pub trait IntoResponse {
    /// Converts this value into a `hyper::Response`
    fn into_response(self, state: &State) -> Response<Body>;
}

impl IntoResponse for Response<Body> {
    fn into_response(self, _state: &State) -> Response<Body> {
        self
    }
}

impl<T, E> IntoResponse for ::std::result::Result<T, E>
where
    T: IntoResponse,
    E: IntoResponse,
{
    fn into_response(self, state: &State) -> Response<Body> {
        match self {
            Ok(res) => res.into_response(state),
            Err(e) => e.into_response(state),
        }
    }
}

impl<B> IntoResponse for (Mime, B)
where
    B: Into<Body>,
{
    fn into_response(self, state: &State) -> Response<Body> {
        (StatusCode::OK, self.0, self.1).into_response(state)
    }
}

impl<B> IntoResponse for (StatusCode, Mime, B)
where
    B: Into<Body>,
{
    fn into_response(self, state: &State) -> Response<Body> {
        response::create_response(state, self.0, self.1, self.2)
    }
}

// derive IntoResponse for Into<Body> types
macro_rules! derive_into_response {
    ($type:ty) => {
        impl IntoResponse for $type {
            fn into_response(self, state: &State) -> Response<Body> {
                (StatusCode::OK, mime::TEXT_PLAIN, self).into_response(state)
            }
        }
    };
}

// derive Into<Body> types - this is required because we
// can't impl IntoResponse for Into<Body> due to Response<T>
// and the potential it will add Into<Body> in the future
derive_into_response!(Bytes);
derive_into_response!(String);
derive_into_response!(Vec<u8>);
derive_into_response!(&'static str);
derive_into_response!(&'static [u8]);
derive_into_response!(Cow<'static, str>);
derive_into_response!(Cow<'static, [u8]>);