1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
// Copyright 2018 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::{
    mutex::{RawMutex, RawMutexFair, RawMutexTimed},
    GuardNoSend,
};
use core::{
    cell::{Cell, UnsafeCell},
    fmt,
    marker::PhantomData,
    mem,
    num::NonZeroUsize,
    ops::Deref,
    sync::atomic::{AtomicUsize, Ordering},
};

#[cfg(feature = "arc_lock")]
use alloc::sync::Arc;
#[cfg(feature = "arc_lock")]
use core::mem::ManuallyDrop;
#[cfg(feature = "arc_lock")]
use core::ptr;

#[cfg(feature = "owning_ref")]
use owning_ref::StableAddress;

#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

/// Helper trait which returns a non-zero thread ID.
///
/// The simplest way to implement this trait is to return the address of a
/// thread-local variable.
///
/// # Safety
///
/// Implementations of this trait must ensure that no two active threads share
/// the same thread ID. However the ID of a thread that has exited can be
/// re-used since that thread is no longer active.
pub unsafe trait GetThreadId {
    /// Initial value.
    // A “non-constant” const item is a legacy way to supply an initialized value to downstream
    // static items. Can hopefully be replaced with `const fn new() -> Self` at some point.
    #[allow(clippy::declare_interior_mutable_const)]
    const INIT: Self;

    /// Returns a non-zero thread ID which identifies the current thread of
    /// execution.
    fn nonzero_thread_id(&self) -> NonZeroUsize;
}

/// A raw mutex type that wraps another raw mutex to provide reentrancy.
///
/// Although this has the same methods as the [`RawMutex`] trait, it does
/// not implement it, and should not be used in the same way, since this
/// mutex can successfully acquire a lock multiple times in the same thread.
/// Only use this when you know you want a raw mutex that can be locked
/// reentrantly; you probably want [`ReentrantMutex`] instead.
///
/// [`RawMutex`]: trait.RawMutex.html
/// [`ReentrantMutex`]: struct.ReentrantMutex.html
pub struct RawReentrantMutex<R, G> {
    owner: AtomicUsize,
    lock_count: Cell<usize>,
    mutex: R,
    get_thread_id: G,
}

unsafe impl<R: RawMutex + Send, G: GetThreadId + Send> Send for RawReentrantMutex<R, G> {}
unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync> Sync for RawReentrantMutex<R, G> {}

impl<R: RawMutex, G: GetThreadId> RawReentrantMutex<R, G> {
    /// Initial value for an unlocked mutex.
    #[allow(clippy::declare_interior_mutable_const)]
    pub const INIT: Self = RawReentrantMutex {
        owner: AtomicUsize::new(0),
        lock_count: Cell::new(0),
        mutex: R::INIT,
        get_thread_id: G::INIT,
    };

    #[inline]
    fn lock_internal<F: FnOnce() -> bool>(&self, try_lock: F) -> bool {
        let id = self.get_thread_id.nonzero_thread_id().get();
        if self.owner.load(Ordering::Relaxed) == id {
            self.lock_count.set(
                self.lock_count
                    .get()
                    .checked_add(1)
                    .expect("ReentrantMutex lock count overflow"),
            );
        } else {
            if !try_lock() {
                return false;
            }
            self.owner.store(id, Ordering::Relaxed);
            debug_assert_eq!(self.lock_count.get(), 0);
            self.lock_count.set(1);
        }
        true
    }

    /// Acquires this mutex, blocking if it's held by another thread.
    #[inline]
    pub fn lock(&self) {
        self.lock_internal(|| {
            self.mutex.lock();
            true
        });
    }

    /// Attempts to acquire this mutex without blocking. Returns `true`
    /// if the lock was successfully acquired and `false` otherwise.
    #[inline]
    pub fn try_lock(&self) -> bool {
        self.lock_internal(|| self.mutex.try_lock())
    }

    /// Unlocks this mutex. The inner mutex may not be unlocked if
    /// this mutex was acquired previously in the current thread.
    ///
    /// # Safety
    ///
    /// This method may only be called if the mutex is held by the current thread.
    #[inline]
    pub unsafe fn unlock(&self) {
        let lock_count = self.lock_count.get() - 1;
        self.lock_count.set(lock_count);
        if lock_count == 0 {
            self.owner.store(0, Ordering::Relaxed);
            self.mutex.unlock();
        }
    }

    /// Checks whether the mutex is currently locked.
    #[inline]
    pub fn is_locked(&self) -> bool {
        self.mutex.is_locked()
    }

    /// Checks whether the mutex is currently held by the current thread.
    #[inline]
    pub fn is_owned_by_current_thread(&self) -> bool {
        let id = self.get_thread_id.nonzero_thread_id().get();
        self.owner.load(Ordering::Relaxed) == id
    }
}

impl<R: RawMutexFair, G: GetThreadId> RawReentrantMutex<R, G> {
    /// Unlocks this mutex using a fair unlock protocol. The inner mutex
    /// may not be unlocked if this mutex was acquired previously in the
    /// current thread.
    ///
    /// # Safety
    ///
    /// This method may only be called if the mutex is held by the current thread.
    #[inline]
    pub unsafe fn unlock_fair(&self) {
        let lock_count = self.lock_count.get() - 1;
        self.lock_count.set(lock_count);
        if lock_count == 0 {
            self.owner.store(0, Ordering::Relaxed);
            self.mutex.unlock_fair();
        }
    }

    /// Temporarily yields the mutex to a waiting thread if there is one.
    ///
    /// This method is functionally equivalent to calling `unlock_fair` followed
    /// by `lock`, however it can be much more efficient in the case where there
    /// are no waiting threads.
    ///
    /// # Safety
    ///
    /// This method may only be called if the mutex is held by the current thread.
    #[inline]
    pub unsafe fn bump(&self) {
        if self.lock_count.get() == 1 {
            let id = self.owner.load(Ordering::Relaxed);
            self.owner.store(0, Ordering::Relaxed);
            self.mutex.bump();
            self.owner.store(id, Ordering::Relaxed);
        }
    }
}

impl<R: RawMutexTimed, G: GetThreadId> RawReentrantMutex<R, G> {
    /// Attempts to acquire this lock until a timeout is reached.
    #[inline]
    pub fn try_lock_until(&self, timeout: R::Instant) -> bool {
        self.lock_internal(|| self.mutex.try_lock_until(timeout))
    }

    /// Attempts to acquire this lock until a timeout is reached.
    #[inline]
    pub fn try_lock_for(&self, timeout: R::Duration) -> bool {
        self.lock_internal(|| self.mutex.try_lock_for(timeout))
    }
}

/// A mutex which can be recursively locked by a single thread.
///
/// This type is identical to `Mutex` except for the following points:
///
/// - Locking multiple times from the same thread will work correctly instead of
///   deadlocking.
/// - `ReentrantMutexGuard` does not give mutable references to the locked data.
///   Use a `RefCell` if you need this.
///
/// See [`Mutex`](struct.Mutex.html) for more details about the underlying mutex
/// primitive.
pub struct ReentrantMutex<R, G, T: ?Sized> {
    raw: RawReentrantMutex<R, G>,
    data: UnsafeCell<T>,
}

unsafe impl<R: RawMutex + Send, G: GetThreadId + Send, T: ?Sized + Send> Send
    for ReentrantMutex<R, G, T>
{
}
unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync, T: ?Sized + Send> Sync
    for ReentrantMutex<R, G, T>
{
}

impl<R: RawMutex, G: GetThreadId, T> ReentrantMutex<R, G, T> {
    /// Creates a new reentrant mutex in an unlocked state ready for use.
    #[cfg(has_const_fn_trait_bound)]
    #[inline]
    pub const fn new(val: T) -> ReentrantMutex<R, G, T> {
        ReentrantMutex {
            data: UnsafeCell::new(val),
            raw: RawReentrantMutex {
                owner: AtomicUsize::new(0),
                lock_count: Cell::new(0),
                mutex: R::INIT,
                get_thread_id: G::INIT,
            },
        }
    }

    /// Creates a new reentrant mutex in an unlocked state ready for use.
    #[cfg(not(has_const_fn_trait_bound))]
    #[inline]
    pub fn new(val: T) -> ReentrantMutex<R, G, T> {
        ReentrantMutex {
            data: UnsafeCell::new(val),
            raw: RawReentrantMutex {
                owner: AtomicUsize::new(0),
                lock_count: Cell::new(0),
                mutex: R::INIT,
                get_thread_id: G::INIT,
            },
        }
    }

    /// Consumes this mutex, returning the underlying data.
    #[inline]
    pub fn into_inner(self) -> T {
        self.data.into_inner()
    }
}

impl<R, G, T> ReentrantMutex<R, G, T> {
    /// Creates a new reentrant mutex based on a pre-existing raw mutex and a
    /// helper to get the thread ID.
    ///
    /// This allows creating a reentrant mutex in a constant context on stable
    /// Rust.
    #[inline]
    pub const fn const_new(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> {
        ReentrantMutex {
            data: UnsafeCell::new(val),
            raw: RawReentrantMutex {
                owner: AtomicUsize::new(0),
                lock_count: Cell::new(0),
                mutex: raw_mutex,
                get_thread_id,
            },
        }
    }
}

impl<R: RawMutex, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> {
    /// # Safety
    ///
    /// The lock must be held when calling this method.
    #[inline]
    unsafe fn guard(&self) -> ReentrantMutexGuard<'_, R, G, T> {
        ReentrantMutexGuard {
            remutex: &self,
            marker: PhantomData,
        }
    }

    /// Acquires a reentrant mutex, blocking the current thread until it is able
    /// to do so.
    ///
    /// If the mutex is held by another thread then this function will block the
    /// local thread until it is available to acquire the mutex. If the mutex is
    /// already held by the current thread then this function will increment the
    /// lock reference count and return immediately. Upon returning,
    /// the thread is the only thread with the mutex held. An RAII guard is
    /// returned to allow scoped unlock of the lock. When the guard goes out of
    /// scope, the mutex will be unlocked.
    #[inline]
    pub fn lock(&self) -> ReentrantMutexGuard<'_, R, G, T> {
        self.raw.lock();
        // SAFETY: The lock is held, as required.
        unsafe { self.guard() }
    }

    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then `None` is returned.
    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
    /// guard is dropped.
    ///
    /// This function does not block.
    #[inline]
    pub fn try_lock(&self) -> Option<ReentrantMutexGuard<'_, R, G, T>> {
        if self.raw.try_lock() {
            // SAFETY: The lock is held, as required.
            Some(unsafe { self.guard() })
        } else {
            None
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `ReentrantMutex` mutably, no actual locking needs to
    /// take place---the mutable borrow statically guarantees no locks exist.
    #[inline]
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data.get() }
    }

    /// Checks whether the mutex is currently locked.
    #[inline]
    pub fn is_locked(&self) -> bool {
        self.raw.is_locked()
    }

    /// Checks whether the mutex is currently held by the current thread.
    #[inline]
    pub fn is_owned_by_current_thread(&self) -> bool {
        self.raw.is_owned_by_current_thread()
    }

    /// Forcibly unlocks the mutex.
    ///
    /// This is useful when combined with `mem::forget` to hold a lock without
    /// the need to maintain a `ReentrantMutexGuard` object alive, for example when
    /// dealing with FFI.
    ///
    /// # Safety
    ///
    /// This method must only be called if the current thread logically owns a
    /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`.
    /// Behavior is undefined if a mutex is unlocked when not locked.
    #[inline]
    pub unsafe fn force_unlock(&self) {
        self.raw.unlock();
    }

    /// Returns the underlying raw mutex object.
    ///
    /// Note that you will most likely need to import the `RawMutex` trait from
    /// `lock_api` to be able to call functions on the raw mutex.
    ///
    /// # Safety
    ///
    /// This method is unsafe because it allows unlocking a mutex while
    /// still holding a reference to a `ReentrantMutexGuard`.
    #[inline]
    pub unsafe fn raw(&self) -> &R {
        &self.raw.mutex
    }

    /// Returns a raw pointer to the underlying data.
    ///
    /// This is useful when combined with `mem::forget` to hold a lock without
    /// the need to maintain a `ReentrantMutexGuard` object alive, for example
    /// when dealing with FFI.
    ///
    /// # Safety
    ///
    /// You must ensure that there are no data races when dereferencing the
    /// returned pointer, for example if the current thread logically owns a
    /// `ReentrantMutexGuard` but that guard has been discarded using
    /// `mem::forget`.
    #[inline]
    pub fn data_ptr(&self) -> *mut T {
        self.data.get()
    }

    /// # Safety
    ///
    /// The lock must be held before calling this method.
    #[cfg(feature = "arc_lock")]
    #[inline]
    unsafe fn guard_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> {
        ArcReentrantMutexGuard {
            remutex: self.clone(),
            marker: PhantomData,
        }
    }

    /// Acquires a reentrant mutex through an `Arc`.
    ///
    /// This method is similar to the `lock` method; however, it requires the `ReentrantMutex` to be inside of an
    /// `Arc` and the resulting mutex guard has no lifetime requirements.
    #[cfg(feature = "arc_lock")]
    #[inline]
    pub fn lock_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> {
        self.raw.lock();
        // SAFETY: locking guarantee is upheld
        unsafe { self.guard_arc() }
    }

    /// Attempts to acquire a reentrant mutex through an `Arc`.
    ///
    /// This method is similar to the `try_lock` method; however, it requires the `ReentrantMutex` to be inside
    /// of an `Arc` and the resulting mutex guard has no lifetime requirements.
    #[cfg(feature = "arc_lock")]
    #[inline]
    pub fn try_lock_arc(self: &Arc<Self>) -> Option<ArcReentrantMutexGuard<R, G, T>> {
        if self.raw.try_lock() {
            // SAFETY: locking guarantee is upheld
            Some(unsafe { self.guard_arc() })
        } else {
            None
        }
    }
}

impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> {
    /// Forcibly unlocks the mutex using a fair unlock protocol.
    ///
    /// This is useful when combined with `mem::forget` to hold a lock without
    /// the need to maintain a `ReentrantMutexGuard` object alive, for example when
    /// dealing with FFI.
    ///
    /// # Safety
    ///
    /// This method must only be called if the current thread logically owns a
    /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`.
    /// Behavior is undefined if a mutex is unlocked when not locked.
    #[inline]
    pub unsafe fn force_unlock_fair(&self) {
        self.raw.unlock_fair();
    }
}

impl<R: RawMutexTimed, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> {
    /// Attempts to acquire this lock until a timeout is reached.
    ///
    /// If the lock could not be acquired before the timeout expired, then
    /// `None` is returned. Otherwise, an RAII guard is returned. The lock will
    /// be unlocked when the guard is dropped.
    #[inline]
    pub fn try_lock_for(&self, timeout: R::Duration) -> Option<ReentrantMutexGuard<'_, R, G, T>> {
        if self.raw.try_lock_for(timeout) {
            // SAFETY: The lock is held, as required.
            Some(unsafe { self.guard() })
        } else {
            None
        }
    }

    /// Attempts to acquire this lock until a timeout is reached.
    ///
    /// If the lock could not be acquired before the timeout expired, then
    /// `None` is returned. Otherwise, an RAII guard is returned. The lock will
    /// be unlocked when the guard is dropped.
    #[inline]
    pub fn try_lock_until(&self, timeout: R::Instant) -> Option<ReentrantMutexGuard<'_, R, G, T>> {
        if self.raw.try_lock_until(timeout) {
            // SAFETY: The lock is held, as required.
            Some(unsafe { self.guard() })
        } else {
            None
        }
    }

    /// Attempts to acquire this lock until a timeout is reached, through an `Arc`.
    ///
    /// This method is similar to the `try_lock_for` method; however, it requires the `ReentrantMutex` to be
    /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements.
    #[cfg(feature = "arc_lock")]
    #[inline]
    pub fn try_lock_arc_for(
        self: &Arc<Self>,
        timeout: R::Duration,
    ) -> Option<ArcReentrantMutexGuard<R, G, T>> {
        if self.raw.try_lock_for(timeout) {
            // SAFETY: locking guarantee is upheld
            Some(unsafe { self.guard_arc() })
        } else {
            None
        }
    }

    /// Attempts to acquire this lock until a timeout is reached, through an `Arc`.
    ///
    /// This method is similar to the `try_lock_until` method; however, it requires the `ReentrantMutex` to be
    /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements.
    #[cfg(feature = "arc_lock")]
    #[inline]
    pub fn try_lock_arc_until(
        self: &Arc<Self>,
        timeout: R::Instant,
    ) -> Option<ArcReentrantMutexGuard<R, G, T>> {
        if self.raw.try_lock_until(timeout) {
            // SAFETY: locking guarantee is upheld
            Some(unsafe { self.guard_arc() })
        } else {
            None
        }
    }
}

impl<R: RawMutex, G: GetThreadId, T: ?Sized + Default> Default for ReentrantMutex<R, G, T> {
    #[inline]
    fn default() -> ReentrantMutex<R, G, T> {
        ReentrantMutex::new(Default::default())
    }
}

impl<R: RawMutex, G: GetThreadId, T> From<T> for ReentrantMutex<R, G, T> {
    #[inline]
    fn from(t: T) -> ReentrantMutex<R, G, T> {
        ReentrantMutex::new(t)
    }
}

impl<R: RawMutex, G: GetThreadId, T: ?Sized + fmt::Debug> fmt::Debug for ReentrantMutex<R, G, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.try_lock() {
            Some(guard) => f
                .debug_struct("ReentrantMutex")
                .field("data", &&*guard)
                .finish(),
            None => {
                struct LockedPlaceholder;
                impl fmt::Debug for LockedPlaceholder {
                    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                        f.write_str("<locked>")
                    }
                }

                f.debug_struct("ReentrantMutex")
                    .field("data", &LockedPlaceholder)
                    .finish()
            }
        }
    }
}

// Copied and modified from serde
#[cfg(feature = "serde")]
impl<R, G, T> Serialize for ReentrantMutex<R, G, T>
where
    R: RawMutex,
    G: GetThreadId,
    T: Serialize + ?Sized,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.lock().serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, R, G, T> Deserialize<'de> for ReentrantMutex<R, G, T>
where
    R: RawMutex,
    G: GetThreadId,
    T: Deserialize<'de> + ?Sized,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Deserialize::deserialize(deserializer).map(ReentrantMutex::new)
    }
}

/// An RAII implementation of a "scoped lock" of a reentrant mutex. When this structure
/// is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` implementation.
#[must_use = "if unused the ReentrantMutex will immediately unlock"]
pub struct ReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> {
    remutex: &'a ReentrantMutex<R, G, T>,
    marker: PhantomData<(&'a T, GuardNoSend)>,
}

unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync
    for ReentrantMutexGuard<'a, R, G, T>
{
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> ReentrantMutexGuard<'a, R, G, T> {
    /// Returns a reference to the original `ReentrantMutex` object.
    pub fn remutex(s: &Self) -> &'a ReentrantMutex<R, G, T> {
        s.remutex
    }

    /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data.
    ///
    /// This operation cannot fail as the `ReentrantMutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U>
    where
        F: FnOnce(&T) -> &U,
    {
        let raw = &s.remutex.raw;
        let data = f(unsafe { &*s.remutex.data.get() });
        mem::forget(s);
        MappedReentrantMutexGuard {
            raw,
            data,
            marker: PhantomData,
        }
    }

    /// Attempts to make  a new `MappedReentrantMutexGuard` for a component of the
    /// locked data. The original guard is return if the closure returns `None`.
    ///
    /// This operation cannot fail as the `ReentrantMutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn try_map<U: ?Sized, F>(
        s: Self,
        f: F,
    ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        let raw = &s.remutex.raw;
        let data = match f(unsafe { &mut *s.remutex.data.get() }) {
            Some(data) => data,
            None => return Err(s),
        };
        mem::forget(s);
        Ok(MappedReentrantMutexGuard {
            raw,
            data,
            marker: PhantomData,
        })
    }

    /// Temporarily unlocks the mutex to execute the given function.
    ///
    /// This is safe because `&mut` guarantees that there exist no other
    /// references to the data protected by the mutex.
    #[inline]
    pub fn unlocked<F, U>(s: &mut Self, f: F) -> U
    where
        F: FnOnce() -> U,
    {
        // Safety: A ReentrantMutexGuard always holds the lock.
        unsafe {
            s.remutex.raw.unlock();
        }
        defer!(s.remutex.raw.lock());
        f()
    }
}

impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a>
    ReentrantMutexGuard<'a, R, G, T>
{
    /// Unlocks the mutex using a fair unlock protocol.
    ///
    /// By default, mutexes are unfair and allow the current thread to re-lock
    /// the mutex before another has the chance to acquire the lock, even if
    /// that thread has been blocked on the mutex for a long time. This is the
    /// default because it allows much higher throughput as it avoids forcing a
    /// context switch on every mutex unlock. This can result in one thread
    /// acquiring a mutex many more times than other threads.
    ///
    /// However in some cases it can be beneficial to ensure fairness by forcing
    /// the lock to pass on to a waiting thread if there is one. This is done by
    /// using this method instead of dropping the `ReentrantMutexGuard` normally.
    #[inline]
    pub fn unlock_fair(s: Self) {
        // Safety: A ReentrantMutexGuard always holds the lock
        unsafe {
            s.remutex.raw.unlock_fair();
        }
        mem::forget(s);
    }

    /// Temporarily unlocks the mutex to execute the given function.
    ///
    /// The mutex is unlocked a fair unlock protocol.
    ///
    /// This is safe because `&mut` guarantees that there exist no other
    /// references to the data protected by the mutex.
    #[inline]
    pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U
    where
        F: FnOnce() -> U,
    {
        // Safety: A ReentrantMutexGuard always holds the lock
        unsafe {
            s.remutex.raw.unlock_fair();
        }
        defer!(s.remutex.raw.lock());
        f()
    }

    /// Temporarily yields the mutex to a waiting thread if there is one.
    ///
    /// This method is functionally equivalent to calling `unlock_fair` followed
    /// by `lock`, however it can be much more efficient in the case where there
    /// are no waiting threads.
    #[inline]
    pub fn bump(s: &mut Self) {
        // Safety: A ReentrantMutexGuard always holds the lock
        unsafe {
            s.remutex.raw.bump();
        }
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref
    for ReentrantMutexGuard<'a, R, G, T>
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.remutex.data.get() }
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop
    for ReentrantMutexGuard<'a, R, G, T>
{
    #[inline]
    fn drop(&mut self) {
        // Safety: A ReentrantMutexGuard always holds the lock.
        unsafe {
            self.remutex.raw.unlock();
        }
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug
    for ReentrantMutexGuard<'a, R, G, T>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display
    for ReentrantMutexGuard<'a, R, G, T>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[cfg(feature = "owning_ref")]
unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress
    for ReentrantMutexGuard<'a, R, G, T>
{
}

/// An RAII mutex guard returned by the `Arc` locking operations on `ReentrantMutex`.
///
/// This is similar to the `ReentrantMutexGuard` struct, except instead of using a reference to unlock the
/// `Mutex` it uses an `Arc<ReentrantMutex>`. This has several advantages, most notably that it has an `'static`
/// lifetime.
#[cfg(feature = "arc_lock")]
#[must_use = "if unused the ReentrantMutex will immediately unlock"]
pub struct ArcReentrantMutexGuard<R: RawMutex, G: GetThreadId, T: ?Sized> {
    remutex: Arc<ReentrantMutex<R, G, T>>,
    marker: PhantomData<GuardNoSend>,
}

#[cfg(feature = "arc_lock")]
impl<R: RawMutex, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> {
    /// Returns a reference to the `ReentrantMutex` this object is guarding, contained in its `Arc`.
    pub fn remutex(s: &Self) -> &Arc<ReentrantMutex<R, G, T>> {
        &s.remutex
    }

    /// Temporarily unlocks the mutex to execute the given function.
    ///
    /// This is safe because `&mut` guarantees that there exist no other
    /// references to the data protected by the mutex.
    #[inline]
    pub fn unlocked<F, U>(s: &mut Self, f: F) -> U
    where
        F: FnOnce() -> U,
    {
        // Safety: A ReentrantMutexGuard always holds the lock.
        unsafe {
            s.remutex.raw.unlock();
        }
        defer!(s.remutex.raw.lock());
        f()
    }
}

#[cfg(feature = "arc_lock")]
impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> {
    /// Unlocks the mutex using a fair unlock protocol.
    ///
    /// This is functionally identical to the `unlock_fair` method on [`ReentrantMutexGuard`].
    #[inline]
    pub fn unlock_fair(s: Self) {
        // Safety: A ReentrantMutexGuard always holds the lock
        unsafe {
            s.remutex.raw.unlock_fair();
        }

        // SAFETY: ensure that the Arc's refcount is decremented
        let mut s = ManuallyDrop::new(s);
        unsafe { ptr::drop_in_place(&mut s.remutex) };
    }

    /// Temporarily unlocks the mutex to execute the given function.
    ///
    /// This is functionally identical to the `unlocked_fair` method on [`ReentrantMutexGuard`].
    #[inline]
    pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U
    where
        F: FnOnce() -> U,
    {
        // Safety: A ReentrantMutexGuard always holds the lock
        unsafe {
            s.remutex.raw.unlock_fair();
        }
        defer!(s.remutex.raw.lock());
        f()
    }

    /// Temporarily yields the mutex to a waiting thread if there is one.
    ///
    /// This is functionally equivalent to the `bump` method on [`ReentrantMutexGuard`].
    #[inline]
    pub fn bump(s: &mut Self) {
        // Safety: A ReentrantMutexGuard always holds the lock
        unsafe {
            s.remutex.raw.bump();
        }
    }
}

#[cfg(feature = "arc_lock")]
impl<R: RawMutex, G: GetThreadId, T: ?Sized> Deref for ArcReentrantMutexGuard<R, G, T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.remutex.data.get() }
    }
}

#[cfg(feature = "arc_lock")]
impl<R: RawMutex, G: GetThreadId, T: ?Sized> Drop for ArcReentrantMutexGuard<R, G, T> {
    #[inline]
    fn drop(&mut self) {
        // Safety: A ReentrantMutexGuard always holds the lock.
        unsafe {
            self.remutex.raw.unlock();
        }
    }
}

/// An RAII mutex guard returned by `ReentrantMutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedReentrantMutexGuard` and `ReentrantMutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
#[must_use = "if unused the ReentrantMutex will immediately unlock"]
pub struct MappedReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> {
    raw: &'a RawReentrantMutex<R, G>,
    data: *const T,
    marker: PhantomData<&'a T>,
}

unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync
    for MappedReentrantMutexGuard<'a, R, G, T>
{
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a>
    MappedReentrantMutexGuard<'a, R, G, T>
{
    /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data.
    ///
    /// This operation cannot fail as the `MappedReentrantMutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U>
    where
        F: FnOnce(&T) -> &U,
    {
        let raw = s.raw;
        let data = f(unsafe { &*s.data });
        mem::forget(s);
        MappedReentrantMutexGuard {
            raw,
            data,
            marker: PhantomData,
        }
    }

    /// Attempts to make  a new `MappedReentrantMutexGuard` for a component of the
    /// locked data. The original guard is return if the closure returns `None`.
    ///
    /// This operation cannot fail as the `MappedReentrantMutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn try_map<U: ?Sized, F>(
        s: Self,
        f: F,
    ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self>
    where
        F: FnOnce(&T) -> Option<&U>,
    {
        let raw = s.raw;
        let data = match f(unsafe { &*s.data }) {
            Some(data) => data,
            None => return Err(s),
        };
        mem::forget(s);
        Ok(MappedReentrantMutexGuard {
            raw,
            data,
            marker: PhantomData,
        })
    }
}

impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a>
    MappedReentrantMutexGuard<'a, R, G, T>
{
    /// Unlocks the mutex using a fair unlock protocol.
    ///
    /// By default, mutexes are unfair and allow the current thread to re-lock
    /// the mutex before another has the chance to acquire the lock, even if
    /// that thread has been blocked on the mutex for a long time. This is the
    /// default because it allows much higher throughput as it avoids forcing a
    /// context switch on every mutex unlock. This can result in one thread
    /// acquiring a mutex many more times than other threads.
    ///
    /// However in some cases it can be beneficial to ensure fairness by forcing
    /// the lock to pass on to a waiting thread if there is one. This is done by
    /// using this method instead of dropping the `ReentrantMutexGuard` normally.
    #[inline]
    pub fn unlock_fair(s: Self) {
        // Safety: A MappedReentrantMutexGuard always holds the lock
        unsafe {
            s.raw.unlock_fair();
        }
        mem::forget(s);
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref
    for MappedReentrantMutexGuard<'a, R, G, T>
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.data }
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop
    for MappedReentrantMutexGuard<'a, R, G, T>
{
    #[inline]
    fn drop(&mut self) {
        // Safety: A MappedReentrantMutexGuard always holds the lock.
        unsafe {
            self.raw.unlock();
        }
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug
    for MappedReentrantMutexGuard<'a, R, G, T>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display
    for MappedReentrantMutexGuard<'a, R, G, T>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[cfg(feature = "owning_ref")]
unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress
    for MappedReentrantMutexGuard<'a, R, G, T>
{
}