1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::raw_mutex::RawMutex;
use lock_api;

/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can be statically initialized or created by the `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// # Fairness
///
/// A typical unfair lock can often end up in a situation where a single thread
/// quickly acquires and releases the same mutex in succession, which can starve
/// other threads waiting to acquire the mutex. While this improves throughput
/// because it doesn't force a context switch when a thread tries to re-acquire
/// a mutex it has just released, this can starve other threads.
///
/// This mutex uses [eventual fairness](https://trac.webkit.org/changeset/203350)
/// to ensure that the lock will be fair on average without sacrificing
/// throughput. This is done by forcing a fair unlock on average every 0.5ms,
/// which will force the lock to go to the next thread waiting for the mutex.
///
/// Additionally, any critical section longer than 1ms will always use a fair
/// unlock, which has a negligible impact on throughput considering the length
/// of the critical section.
///
/// You can also force a fair unlock by calling `MutexGuard::unlock_fair` when
/// unlocking a mutex instead of simply dropping the `MutexGuard`.
///
/// # Differences from the standard library `Mutex`
///
/// - No poisoning, the lock is released normally on panic.
/// - Only requires 1 byte of space, whereas the standard library boxes the
///   `Mutex` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
/// - Efficient handling of micro-contention using adaptive spinning.
/// - Allows raw locking & unlocking without a guard.
/// - Supports eventual fairness so that the mutex is fair on average.
/// - Optionally allows making the mutex fair by calling `MutexGuard::unlock_fair`.
///
/// # Examples
///
/// ```
/// use parking_lot::Mutex;
/// use std::sync::{Arc, mpsc::channel};
/// use std::thread;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..10 {
///     let (data, tx) = (Arc::clone(&data), tx.clone());
///     thread::spawn(move || {
///         // The shared state can only be accessed once the lock is held.
///         // Our non-atomic increment is safe because we're the only thread
///         // which can access the shared state when the lock is held.
///         let mut data = data.lock();
///         *data += 1;
///         if *data == N {
///             tx.send(()).unwrap();
///         }
///         // the lock is unlocked here when `data` goes out of scope.
///     });
/// }
///
/// rx.recv().unwrap();
/// ```
pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;

/// Creates a new mutex in an unlocked state ready for use.
///
/// This allows creating a mutex in a constant context on stable Rust.
pub const fn const_mutex<T>(val: T) -> Mutex<T> {
    Mutex::const_new(<RawMutex as lock_api::RawMutex>::INIT, val)
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` and `DerefMut` implementations.
pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;

/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedMutexGuard` and `MutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;

#[cfg(test)]
mod tests {
    use crate::{Condvar, Mutex};
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    #[cfg(feature = "serde")]
    use bincode::{deserialize, serialize};

    struct Packet<T>(Arc<(Mutex<T>, Condvar)>);

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    unsafe impl<T: Send> Send for Packet<T> {}
    unsafe impl<T> Sync for Packet<T> {}

    #[test]
    fn smoke() {
        let m = Mutex::new(());
        drop(m.lock());
        drop(m.lock());
    }

    #[test]
    fn lots_and_lots() {
        const J: u32 = 1000;
        const K: u32 = 3;

        let m = Arc::new(Mutex::new(0));

        fn inc(m: &Mutex<u32>) {
            for _ in 0..J {
                *m.lock() += 1;
            }
        }

        let (tx, rx) = channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move || {
                inc(&m2);
                tx2.send(()).unwrap();
            });
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move || {
                inc(&m2);
                tx2.send(()).unwrap();
            });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(*m.lock(), J * K * 2);
    }

    #[test]
    fn try_lock() {
        let m = Mutex::new(());
        *m.try_lock().unwrap() = ();
    }

    #[test]
    fn test_into_inner() {
        let m = Mutex::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = Mutex::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_get_mut() {
        let mut m = Mutex::new(NonCopy(10));
        *m.get_mut() = NonCopy(20);
        assert_eq!(m.into_inner(), NonCopy(20));
    }

    #[test]
    fn test_mutex_arc_condvar() {
        let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
        let packet2 = Packet(packet.0.clone());
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            // wait until parent gets in
            rx.recv().unwrap();
            let &(ref lock, ref cvar) = &*packet2.0;
            let mut lock = lock.lock();
            *lock = true;
            cvar.notify_one();
        });

        let &(ref lock, ref cvar) = &*packet.0;
        let mut lock = lock.lock();
        tx.send(()).unwrap();
        assert!(!*lock);
        while !*lock {
            cvar.wait(&mut lock);
        }
    }

    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(Mutex::new(1));
        let arc2 = Arc::new(Mutex::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            let lock = arc2.lock();
            let lock2 = lock.lock();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(Mutex::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || {
            struct Unwinder {
                i: Arc<Mutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.lock();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_mutex_unsized() {
        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock(), comp);
    }

    #[test]
    fn test_mutexguard_sync() {
        fn sync<T: Sync>(_: T) {}

        let mutex = Mutex::new(());
        sync(mutex.lock());
    }

    #[test]
    fn test_mutex_debug() {
        let mutex = Mutex::new(vec![0u8, 10]);

        assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
        let _lock = mutex.lock();
        assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde() {
        let contents: Vec<u8> = vec![0, 1, 2];
        let mutex = Mutex::new(contents.clone());

        let serialized = serialize(&mutex).unwrap();
        let deserialized: Mutex<Vec<u8>> = deserialize(&serialized).unwrap();

        assert_eq!(*(mutex.lock()), *(deserialized.lock()));
        assert_eq!(contents, *(deserialized.lock()));
    }
}