logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Bernoulli distribution.

use crate::distributions::Distribution;
use crate::Rng;
use core::{fmt, u64};

#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// The Bernoulli distribution.
///
/// This is a special case of the Binomial distribution where `n = 1`.
///
/// # Example
///
/// ```rust
/// use rand::distributions::{Bernoulli, Distribution};
///
/// let d = Bernoulli::new(0.3).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a Bernoulli distribution", v);
/// ```
///
/// # Precision
///
/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
/// so only probabilities that are multiples of 2<sup>-64</sup> can be
/// represented.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Bernoulli {
    /// Probability of success, relative to the maximal integer.
    p_int: u64,
}

// To sample from the Bernoulli distribution we use a method that compares a
// random `u64` value `v < (p * 2^64)`.
//
// If `p == 1.0`, the integer `v` to compare against can not represented as a
// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
// Note that  value of `p < 1.0` can never result in `u64::MAX`, because an
// `f64` only has 53 bits of precision, and the next largest value of `p` will
// result in `2^64 - 2048`.
//
// Also there is a 100% theoretical concern: if someone consistently wants to
// generate `true` using the Bernoulli distribution (i.e. by using a probability
// of `1.0`), just using `u64::MAX` is not enough. On average it would return
// false once every 2^64 iterations. Some people apparently care about this
// case.
//
// That is why we special-case `u64::MAX` to always return `true`, without using
// the RNG, and pay the performance price for all uses that *are* reasonable.
// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
// extra check.
const ALWAYS_TRUE: u64 = u64::MAX;

// This is just `2.0.powi(64)`, but written this way because it is not available
// in `no_std` mode.
const SCALE: f64 = 2.0 * (1u64 << 63) as f64;

/// Error type returned from `Bernoulli::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BernoulliError {
    /// `p < 0` or `p > 1`.
    InvalidProbability,
}

impl fmt::Display for BernoulliError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
        })
    }
}

#[cfg(feature = "std")]
impl ::std::error::Error for BernoulliError {}

impl Bernoulli {
    /// Construct a new `Bernoulli` with the given probability of success `p`.
    ///
    /// # Precision
    ///
    /// For `p = 1.0`, the resulting distribution will always generate true.
    /// For `p = 0.0`, the resulting distribution will always generate false.
    ///
    /// This method is accurate for any input `p` in the range `[0, 1]` which is
    /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
    /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
    #[inline]
    pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
        if !(0.0..1.0).contains(&p) {
            if p == 1.0 {
                return Ok(Bernoulli { p_int: ALWAYS_TRUE });
            }
            return Err(BernoulliError::InvalidProbability);
        }
        Ok(Bernoulli {
            p_int: (p * SCALE) as u64,
        })
    }

    /// Construct a new `Bernoulli` with the probability of success of
    /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
    /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
    ///
    /// return `true`. If `numerator == 0` it will always return `false`.
    /// For `numerator > denominator` and `denominator == 0`, this returns an
    /// error. Otherwise, for `numerator == denominator`, samples are always
    /// true; for `numerator == 0` samples are always false.
    #[inline]
    pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
        if numerator > denominator || denominator == 0 {
            return Err(BernoulliError::InvalidProbability);
        }
        if numerator == denominator {
            return Ok(Bernoulli { p_int: ALWAYS_TRUE });
        }
        let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
        Ok(Bernoulli { p_int })
    }
}

impl Distribution<bool> for Bernoulli {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
        // Make sure to always return true for p = 1.0.
        if self.p_int == ALWAYS_TRUE {
            return true;
        }
        let v: u64 = rng.gen();
        v < self.p_int
    }
}

#[cfg(test)]
mod test {
    use super::Bernoulli;
    use crate::distributions::Distribution;
    use crate::Rng;

    #[test]
    #[cfg(feature="serde1")]
    fn test_serializing_deserializing_bernoulli() {
        let coin_flip = Bernoulli::new(0.5).unwrap();
        let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();

        assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
    }

    #[test]
    fn test_trivial() {
        // We prefer to be explicit here.
        #![allow(clippy::bool_assert_comparison)]

        let mut r = crate::test::rng(1);
        let always_false = Bernoulli::new(0.0).unwrap();
        let always_true = Bernoulli::new(1.0).unwrap();
        for _ in 0..5 {
            assert_eq!(r.sample::<bool, _>(&always_false), false);
            assert_eq!(r.sample::<bool, _>(&always_true), true);
            assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
            assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_average() {
        const P: f64 = 0.3;
        const NUM: u32 = 3;
        const DENOM: u32 = 10;
        let d1 = Bernoulli::new(P).unwrap();
        let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
        const N: u32 = 100_000;

        let mut sum1: u32 = 0;
        let mut sum2: u32 = 0;
        let mut rng = crate::test::rng(2);
        for _ in 0..N {
            if d1.sample(&mut rng) {
                sum1 += 1;
            }
            if d2.sample(&mut rng) {
                sum2 += 1;
            }
        }
        let avg1 = (sum1 as f64) / (N as f64);
        assert!((avg1 - P).abs() < 5e-3);

        let avg2 = (sum2 as f64) / (N as f64);
        assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
    }

    #[test]
    fn value_stability() {
        let mut rng = crate::test::rng(3);
        let distr = Bernoulli::new(0.4532).unwrap();
        let mut buf = [false; 10];
        for x in &mut buf {
            *x = rng.sample(&distr);
        }
        assert_eq!(buf, [
            true, false, false, true, false, false, true, true, true, true
        ]);
    }

    #[test]
    fn bernoulli_distributions_can_be_compared() {
        assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0));
    }
}