1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
use crate::time::driver::TimerHandle;

use crate::time::driver::{EntryList, TimerShared};

use std::{fmt, ptr::NonNull};

/// Wheel for a single level in the timer. This wheel contains 64 slots.
pub(crate) struct Level {
    level: usize,

    /// Bit field tracking which slots currently contain entries.
    ///
    /// Using a bit field to track slots that contain entries allows avoiding a
    /// scan to find entries. This field is updated when entries are added or
    /// removed from a slot.
    ///
    /// The least-significant bit represents slot zero.
    occupied: u64,

    /// Slots. We access these via the EntryInner `current_list` as well, so this needs to be an UnsafeCell.
    slot: [EntryList; LEVEL_MULT],
}

/// Indicates when a slot must be processed next.
#[derive(Debug)]
pub(crate) struct Expiration {
    /// The level containing the slot.
    pub(crate) level: usize,

    /// The slot index.
    pub(crate) slot: usize,

    /// The instant at which the slot needs to be processed.
    pub(crate) deadline: u64,
}

/// Level multiplier.
///
/// Being a power of 2 is very important.
const LEVEL_MULT: usize = 64;

impl Level {
    pub(crate) fn new(level: usize) -> Level {
        // A value has to be Copy in order to use syntax like:
        //     let stack = Stack::default();
        //     ...
        //     slots: [stack; 64],
        //
        // Alternatively, since Stack is Default one can
        // use syntax like:
        //     let slots: [Stack; 64] = Default::default();
        //
        // However, that is only supported for arrays of size
        // 32 or fewer.  So in our case we have to explicitly
        // invoke the constructor for each array element.
        let ctor = EntryList::default;

        Level {
            level,
            occupied: 0,
            slot: [
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
                ctor(),
            ],
        }
    }

    /// Finds the slot that needs to be processed next and returns the slot and
    /// `Instant` at which this slot must be processed.
    pub(crate) fn next_expiration(&self, now: u64) -> Option<Expiration> {
        // Use the `occupied` bit field to get the index of the next slot that
        // needs to be processed.
        let slot = match self.next_occupied_slot(now) {
            Some(slot) => slot,
            None => return None,
        };

        // From the slot index, calculate the `Instant` at which it needs to be
        // processed. This value *must* be in the future with respect to `now`.

        let level_range = level_range(self.level);
        let slot_range = slot_range(self.level);

        // Compute the start date of the current level by masking the low bits
        // of `now` (`level_range` is a power of 2).
        let level_start = now & !(level_range - 1);
        let mut deadline = level_start + slot as u64 * slot_range;

        if deadline <= now {
            // A timer is in a slot "prior" to the current time. This can occur
            // because we do not have an infinite hierarchy of timer levels, and
            // eventually a timer scheduled for a very distant time might end up
            // being placed in a slot that is beyond the end of all of the
            // arrays.
            //
            // To deal with this, we first limit timers to being scheduled no
            // more than MAX_DURATION ticks in the future; that is, they're at
            // most one rotation of the top level away. Then, we force timers
            // that logically would go into the top+1 level, to instead go into
            // the top level's slots.
            //
            // What this means is that the top level's slots act as a
            // pseudo-ring buffer, and we rotate around them indefinitely. If we
            // compute a deadline before now, and it's the top level, it
            // therefore means we're actually looking at a slot in the future.
            debug_assert_eq!(self.level, super::NUM_LEVELS - 1);

            deadline += level_range;
        }

        debug_assert!(
            deadline >= now,
            "deadline={:016X}; now={:016X}; level={}; lr={:016X}, sr={:016X}, slot={}; occupied={:b}",
            deadline,
            now,
            self.level,
            level_range,
            slot_range,
            slot,
            self.occupied
        );

        Some(Expiration {
            level: self.level,
            slot,
            deadline,
        })
    }

    fn next_occupied_slot(&self, now: u64) -> Option<usize> {
        if self.occupied == 0 {
            return None;
        }

        // Get the slot for now using Maths
        let now_slot = (now / slot_range(self.level)) as usize;
        let occupied = self.occupied.rotate_right(now_slot as u32);
        let zeros = occupied.trailing_zeros() as usize;
        let slot = (zeros + now_slot) % 64;

        Some(slot)
    }

    pub(crate) unsafe fn add_entry(&mut self, item: TimerHandle) {
        let slot = slot_for(item.cached_when(), self.level);

        self.slot[slot].push_front(item);

        self.occupied |= occupied_bit(slot);
    }

    pub(crate) unsafe fn remove_entry(&mut self, item: NonNull<TimerShared>) {
        let slot = slot_for(unsafe { item.as_ref().cached_when() }, self.level);

        unsafe { self.slot[slot].remove(item) };
        if self.slot[slot].is_empty() {
            // The bit is currently set
            debug_assert!(self.occupied & occupied_bit(slot) != 0);

            // Unset the bit
            self.occupied ^= occupied_bit(slot);
        }
    }

    pub(crate) fn take_slot(&mut self, slot: usize) -> EntryList {
        self.occupied &= !occupied_bit(slot);

        std::mem::take(&mut self.slot[slot])
    }
}

impl fmt::Debug for Level {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Level")
            .field("occupied", &self.occupied)
            .finish()
    }
}

fn occupied_bit(slot: usize) -> u64 {
    1 << slot
}

fn slot_range(level: usize) -> u64 {
    LEVEL_MULT.pow(level as u32) as u64
}

fn level_range(level: usize) -> u64 {
    LEVEL_MULT as u64 * slot_range(level)
}

/// Converts a duration (milliseconds) and a level to a slot position.
fn slot_for(duration: u64, level: usize) -> usize {
    ((duration >> (level * 6)) % LEVEL_MULT as u64) as usize
}

#[cfg(all(test, not(loom)))]
mod test {
    use super::*;

    #[test]
    fn test_slot_for() {
        for pos in 0..64 {
            assert_eq!(pos as usize, slot_for(pos, 0));
        }

        for level in 1..5 {
            for pos in level..64 {
                let a = pos * 64_usize.pow(level as u32);
                assert_eq!(pos as usize, slot_for(a as u64, level));
            }
        }
    }
}