logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! The [`Instant`] struct and its associated `impl`s.

use core::cmp::{Ord, Ordering, PartialEq, PartialOrd};
use core::convert::{TryFrom, TryInto};
use core::ops::{Add, Sub};
use core::time::Duration as StdDuration;
use std::borrow::Borrow;
use std::time::Instant as StdInstant;

use crate::Duration;

/// A measurement of a monotonically non-decreasing clock. Opaque and useful only with [`Duration`].
///
/// Instants are always guaranteed to be no less than any previously measured instant when created,
/// and are often useful for tasks such as measuring benchmarks or timing how long an operation
/// takes.
///
/// Note, however, that instants are not guaranteed to be **steady**. In other words, each tick of
/// the underlying clock may not be the same length (e.g. some seconds may be longer than others).
/// An instant may jump forwards or experience time dilation (slow down or speed up), but it will
/// never go backwards.
///
/// Instants are opaque types that can only be compared to one another. There is no method to get
/// "the number of seconds" from an instant. Instead, it only allows measuring the duration between
/// two instants (or comparing two instants).
///
/// This implementation allows for operations with signed [`Duration`]s, but is otherwise identical
/// to [`std::time::Instant`].
#[cfg_attr(__time_03_docs, doc(cfg(feature = "std")))]
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Instant(pub StdInstant);

impl Instant {
    // region: delegation
    /// Returns an `Instant` corresponding to "now".
    ///
    /// ```rust
    /// # use time::Instant;
    /// println!("{:?}", Instant::now());
    /// ```
    pub fn now() -> Self {
        Self(StdInstant::now())
    }

    /// Returns the amount of time elapsed since this instant was created. The duration will always
    /// be nonnegative if the instant is not synthetically created.
    ///
    /// ```rust
    /// # use time::{Instant, ext::{NumericalStdDuration, NumericalDuration}};
    /// # use std::thread;
    /// let instant = Instant::now();
    /// thread::sleep(1.std_milliseconds());
    /// assert!(instant.elapsed() >= 1.milliseconds());
    /// ```
    pub fn elapsed(self) -> Duration {
        Self::now() - self
    }
    // endregion delegation

    // region: checked arithmetic
    /// Returns `Some(t)` where `t` is the time `self + duration` if `t` can be represented as
    /// `Instant` (which means it's inside the bounds of the underlying data structure), `None`
    /// otherwise.
    ///
    /// ```rust
    /// # use time::{Instant, ext::NumericalDuration};
    /// let now = Instant::now();
    /// assert_eq!(now.checked_add(5.seconds()), Some(now + 5.seconds()));
    /// assert_eq!(now.checked_add((-5).seconds()), Some(now + (-5).seconds()));
    /// ```
    pub fn checked_add(self, duration: Duration) -> Option<Self> {
        if duration.is_zero() {
            Some(self)
        } else if duration.is_positive() {
            self.0.checked_add(duration.abs_std()).map(Self)
        } else {
            debug_assert!(duration.is_negative());
            self.0.checked_sub(duration.abs_std()).map(Self)
        }
    }

    /// Returns `Some(t)` where `t` is the time `self - duration` if `t` can be represented as
    /// `Instant` (which means it's inside the bounds of the underlying data structure), `None`
    /// otherwise.
    ///
    /// ```rust
    /// # use time::{Instant, ext::NumericalDuration};
    /// let now = Instant::now();
    /// assert_eq!(now.checked_sub(5.seconds()), Some(now - 5.seconds()));
    /// assert_eq!(now.checked_sub((-5).seconds()), Some(now - (-5).seconds()));
    /// ```
    pub fn checked_sub(self, duration: Duration) -> Option<Self> {
        if duration.is_zero() {
            Some(self)
        } else if duration.is_positive() {
            self.0.checked_sub(duration.abs_std()).map(Self)
        } else {
            debug_assert!(duration.is_negative());
            self.0.checked_add(duration.abs_std()).map(Self)
        }
    }
    // endregion checked arithmetic

    /// Obtain the inner [`std::time::Instant`].
    ///
    /// ```rust
    /// # use time::Instant;
    /// let now = Instant::now();
    /// assert_eq!(now.into_inner(), now.0);
    /// ```
    pub const fn into_inner(self) -> StdInstant {
        self.0
    }
}

// region: trait impls
impl From<StdInstant> for Instant {
    fn from(instant: StdInstant) -> Self {
        Self(instant)
    }
}

impl From<Instant> for StdInstant {
    fn from(instant: Instant) -> Self {
        instant.0
    }
}

impl Sub for Instant {
    type Output = Duration;

    fn sub(self, other: Self) -> Self::Output {
        match self.0.cmp(&other.0) {
            Ordering::Equal => Duration::ZERO,
            Ordering::Greater => (self.0 - other.0)
                .try_into()
                .expect("overflow converting `std::time::Duration` to `time::Duration`"),
            Ordering::Less => -Duration::try_from(other.0 - self.0)
                .expect("overflow converting `std::time::Duration` to `time::Duration`"),
        }
    }
}

impl Sub<StdInstant> for Instant {
    type Output = Duration;

    fn sub(self, other: StdInstant) -> Self::Output {
        self - Self(other)
    }
}

impl Sub<Instant> for StdInstant {
    type Output = Duration;

    fn sub(self, other: Instant) -> Self::Output {
        Instant(self) - other
    }
}

impl Add<Duration> for Instant {
    type Output = Self;

    fn add(self, duration: Duration) -> Self::Output {
        if duration.is_positive() {
            Self(self.0 + duration.abs_std())
        } else if duration.is_negative() {
            Self(self.0 - duration.abs_std())
        } else {
            self
        }
    }
}

impl Add<Duration> for StdInstant {
    type Output = Self;

    fn add(self, duration: Duration) -> Self::Output {
        (Instant(self) + duration).0
    }
}

impl Add<StdDuration> for Instant {
    type Output = Self;

    fn add(self, duration: StdDuration) -> Self::Output {
        Self(self.0 + duration)
    }
}

impl_add_assign!(Instant: Duration, StdDuration);
impl_add_assign!(StdInstant: Duration);

impl Sub<Duration> for Instant {
    type Output = Self;

    fn sub(self, duration: Duration) -> Self::Output {
        if duration.is_positive() {
            Self(self.0 - duration.abs_std())
        } else if duration.is_negative() {
            Self(self.0 + duration.abs_std())
        } else {
            self
        }
    }
}

impl Sub<Duration> for StdInstant {
    type Output = Self;

    fn sub(self, duration: Duration) -> Self::Output {
        (Instant(self) - duration).0
    }
}

impl Sub<StdDuration> for Instant {
    type Output = Self;

    fn sub(self, duration: StdDuration) -> Self::Output {
        Self(self.0 - duration)
    }
}

impl_sub_assign!(Instant: Duration, StdDuration);
impl_sub_assign!(StdInstant: Duration);

impl PartialEq<StdInstant> for Instant {
    fn eq(&self, rhs: &StdInstant) -> bool {
        self.0.eq(rhs)
    }
}

impl PartialEq<Instant> for StdInstant {
    fn eq(&self, rhs: &Instant) -> bool {
        self.eq(&rhs.0)
    }
}

impl PartialOrd<StdInstant> for Instant {
    fn partial_cmp(&self, rhs: &StdInstant) -> Option<Ordering> {
        self.0.partial_cmp(rhs)
    }
}

impl PartialOrd<Instant> for StdInstant {
    fn partial_cmp(&self, rhs: &Instant) -> Option<Ordering> {
        self.partial_cmp(&rhs.0)
    }
}

impl AsRef<StdInstant> for Instant {
    fn as_ref(&self) -> &StdInstant {
        &self.0
    }
}

impl Borrow<StdInstant> for Instant {
    fn borrow(&self) -> &StdInstant {
        &self.0
    }
}
// endregion trait impls