1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
use crate::sync::batch_semaphore::{Semaphore, TryAcquireError};
use crate::sync::mutex::TryLockError;
#[cfg(all(tokio_unstable, feature = "tracing"))]
use crate::util::trace;
use std::cell::UnsafeCell;
use std::marker;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::sync::Arc;
pub(crate) mod owned_read_guard;
pub(crate) mod owned_write_guard;
pub(crate) mod owned_write_guard_mapped;
pub(crate) mod read_guard;
pub(crate) mod write_guard;
pub(crate) mod write_guard_mapped;
pub(crate) use owned_read_guard::OwnedRwLockReadGuard;
pub(crate) use owned_write_guard::OwnedRwLockWriteGuard;
pub(crate) use owned_write_guard_mapped::OwnedRwLockMappedWriteGuard;
pub(crate) use read_guard::RwLockReadGuard;
pub(crate) use write_guard::RwLockWriteGuard;
pub(crate) use write_guard_mapped::RwLockMappedWriteGuard;
#[cfg(not(loom))]
const MAX_READS: u32 = std::u32::MAX >> 3;
#[cfg(loom)]
const MAX_READS: u32 = 10;
/// An asynchronous reader-writer lock.
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// In comparison, a [`Mutex`] does not distinguish between readers or writers
/// that acquire the lock, therefore causing any tasks waiting for the lock to
/// become available to yield. An `RwLock` will allow any number of readers to
/// acquire the lock as long as a writer is not holding the lock.
///
/// The priority policy of Tokio's read-write lock is _fair_ (or
/// [_write-preferring_]), in order to ensure that readers cannot starve
/// writers. Fairness is ensured using a first-in, first-out queue for the tasks
/// awaiting the lock; if a task that wishes to acquire the write lock is at the
/// head of the queue, read locks will not be given out until the write lock has
/// been released. This is in contrast to the Rust standard library's
/// `std::sync::RwLock`, where the priority policy is dependent on the
/// operating system's implementation.
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies [`Send`] to be shared across threads. The RAII guards
/// returned from the locking methods implement [`Deref`](trait@std::ops::Deref)
/// (and [`DerefMut`](trait@std::ops::DerefMut)
/// for the `write` methods) to allow access to the content of the lock.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
/// let r1 = lock.read().await;
/// let r2 = lock.read().await;
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
/// let mut w = lock.write().await;
/// *w += 1;
/// assert_eq!(*w, 6);
/// } // write lock is dropped here
/// }
/// ```
///
/// [`Mutex`]: struct@super::Mutex
/// [`RwLock`]: struct@RwLock
/// [`RwLockReadGuard`]: struct@RwLockReadGuard
/// [`RwLockWriteGuard`]: struct@RwLockWriteGuard
/// [`Send`]: trait@std::marker::Send
/// [_write-preferring_]: https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock#Priority_policies
#[derive(Debug)]
pub struct RwLock<T: ?Sized> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span,
// maximum number of concurrent readers
mr: u32,
//semaphore to coordinate read and write access to T
s: Semaphore,
//inner data T
c: UnsafeCell<T>,
}
#[test]
#[cfg(not(loom))]
fn bounds() {
fn check_send<T: Send>() {}
fn check_sync<T: Sync>() {}
fn check_unpin<T: Unpin>() {}
// This has to take a value, since the async fn's return type is unnameable.
fn check_send_sync_val<T: Send + Sync>(_t: T) {}
check_send::<RwLock<u32>>();
check_sync::<RwLock<u32>>();
check_unpin::<RwLock<u32>>();
check_send::<RwLockReadGuard<'_, u32>>();
check_sync::<RwLockReadGuard<'_, u32>>();
check_unpin::<RwLockReadGuard<'_, u32>>();
check_send::<OwnedRwLockReadGuard<u32, i32>>();
check_sync::<OwnedRwLockReadGuard<u32, i32>>();
check_unpin::<OwnedRwLockReadGuard<u32, i32>>();
check_send::<RwLockWriteGuard<'_, u32>>();
check_sync::<RwLockWriteGuard<'_, u32>>();
check_unpin::<RwLockWriteGuard<'_, u32>>();
check_send::<RwLockMappedWriteGuard<'_, u32>>();
check_sync::<RwLockMappedWriteGuard<'_, u32>>();
check_unpin::<RwLockMappedWriteGuard<'_, u32>>();
check_send::<OwnedRwLockWriteGuard<u32>>();
check_sync::<OwnedRwLockWriteGuard<u32>>();
check_unpin::<OwnedRwLockWriteGuard<u32>>();
check_send::<OwnedRwLockMappedWriteGuard<u32, i32>>();
check_sync::<OwnedRwLockMappedWriteGuard<u32, i32>>();
check_unpin::<OwnedRwLockMappedWriteGuard<u32, i32>>();
let rwlock = Arc::new(RwLock::new(0));
check_send_sync_val(rwlock.read());
check_send_sync_val(Arc::clone(&rwlock).read_owned());
check_send_sync_val(rwlock.write());
check_send_sync_val(Arc::clone(&rwlock).write_owned());
}
// As long as T: Send + Sync, it's fine to send and share RwLock<T> between threads.
// If T were not Send, sending and sharing a RwLock<T> would be bad, since you can access T through
// RwLock<T>.
unsafe impl<T> Send for RwLock<T> where T: ?Sized + Send {}
unsafe impl<T> Sync for RwLock<T> where T: ?Sized + Send + Sync {}
// NB: These impls need to be explicit since we're storing a raw pointer.
// Safety: Stores a raw pointer to `T`, so if `T` is `Sync`, the lock guard over
// `T` is `Send`.
unsafe impl<T> Send for RwLockReadGuard<'_, T> where T: ?Sized + Sync {}
unsafe impl<T> Sync for RwLockReadGuard<'_, T> where T: ?Sized + Send + Sync {}
// T is required to be `Send` because an OwnedRwLockReadGuard can be used to drop the value held in
// the RwLock, unlike RwLockReadGuard.
unsafe impl<T, U> Send for OwnedRwLockReadGuard<T, U>
where
T: ?Sized + Send + Sync,
U: ?Sized + Sync,
{
}
unsafe impl<T, U> Sync for OwnedRwLockReadGuard<T, U>
where
T: ?Sized + Send + Sync,
U: ?Sized + Send + Sync,
{
}
unsafe impl<T> Sync for RwLockWriteGuard<'_, T> where T: ?Sized + Send + Sync {}
unsafe impl<T> Sync for OwnedRwLockWriteGuard<T> where T: ?Sized + Send + Sync {}
unsafe impl<T> Sync for RwLockMappedWriteGuard<'_, T> where T: ?Sized + Send + Sync {}
unsafe impl<T, U> Sync for OwnedRwLockMappedWriteGuard<T, U>
where
T: ?Sized + Send + Sync,
U: ?Sized + Send + Sync,
{
}
// Safety: Stores a raw pointer to `T`, so if `T` is `Sync`, the lock guard over
// `T` is `Send` - but since this is also provides mutable access, we need to
// make sure that `T` is `Send` since its value can be sent across thread
// boundaries.
unsafe impl<T> Send for RwLockWriteGuard<'_, T> where T: ?Sized + Send + Sync {}
unsafe impl<T> Send for OwnedRwLockWriteGuard<T> where T: ?Sized + Send + Sync {}
unsafe impl<T> Send for RwLockMappedWriteGuard<'_, T> where T: ?Sized + Send + Sync {}
unsafe impl<T, U> Send for OwnedRwLockMappedWriteGuard<T, U>
where
T: ?Sized + Send + Sync,
U: ?Sized + Send + Sync,
{
}
impl<T: ?Sized> RwLock<T> {
/// Creates a new instance of an `RwLock<T>` which is unlocked.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// let lock = RwLock::new(5);
/// ```
#[track_caller]
pub fn new(value: T) -> RwLock<T>
where
T: Sized,
{
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = {
let location = std::panic::Location::caller();
let resource_span = tracing::trace_span!(
"runtime.resource",
concrete_type = "RwLock",
kind = "Sync",
loc.file = location.file(),
loc.line = location.line(),
loc.col = location.column(),
);
resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
max_readers = MAX_READS,
);
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = false,
);
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 0,
);
});
resource_span
};
#[cfg(all(tokio_unstable, feature = "tracing"))]
let s = resource_span.in_scope(|| Semaphore::new(MAX_READS as usize));
#[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
let s = Semaphore::new(MAX_READS as usize);
RwLock {
mr: MAX_READS,
c: UnsafeCell::new(value),
s,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
}
}
/// Creates a new instance of an `RwLock<T>` which is unlocked
/// and allows a maximum of `max_reads` concurrent readers.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// let lock = RwLock::with_max_readers(5, 1024);
/// ```
///
/// # Panics
///
/// Panics if `max_reads` is more than `u32::MAX >> 3`.
#[track_caller]
pub fn with_max_readers(value: T, max_reads: u32) -> RwLock<T>
where
T: Sized,
{
assert!(
max_reads <= MAX_READS,
"a RwLock may not be created with more than {} readers",
MAX_READS
);
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = {
let location = std::panic::Location::caller();
let resource_span = tracing::trace_span!(
"runtime.resource",
concrete_type = "RwLock",
kind = "Sync",
loc.file = location.file(),
loc.line = location.line(),
loc.col = location.column(),
);
resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
max_readers = max_reads,
);
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = false,
);
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 0,
);
});
resource_span
};
#[cfg(all(tokio_unstable, feature = "tracing"))]
let s = resource_span.in_scope(|| Semaphore::new(max_reads as usize));
#[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
let s = Semaphore::new(max_reads as usize);
RwLock {
mr: max_reads,
c: UnsafeCell::new(value),
s,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
}
}
/// Creates a new instance of an `RwLock<T>` which is unlocked.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// static LOCK: RwLock<i32> = RwLock::const_new(5);
/// ```
#[cfg(all(feature = "parking_lot", not(all(loom, test))))]
#[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))]
pub const fn const_new(value: T) -> RwLock<T>
where
T: Sized,
{
RwLock {
mr: MAX_READS,
c: UnsafeCell::new(value),
s: Semaphore::const_new(MAX_READS as usize),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Creates a new instance of an `RwLock<T>` which is unlocked
/// and allows a maximum of `max_reads` concurrent readers.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// static LOCK: RwLock<i32> = RwLock::const_with_max_readers(5, 1024);
/// ```
#[cfg(all(feature = "parking_lot", not(all(loom, test))))]
#[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))]
pub const fn const_with_max_readers(value: T, mut max_reads: u32) -> RwLock<T>
where
T: Sized,
{
max_reads &= MAX_READS;
RwLock {
mr: max_reads,
c: UnsafeCell::new(value),
s: Semaphore::const_new(max_reads as usize),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Locks this `RwLock` with shared read access, causing the current task
/// to yield until the lock has been acquired.
///
/// The calling task will yield until there are no writers which hold the
/// lock. There may be other readers inside the lock when the task resumes.
///
/// Note that under the priority policy of [`RwLock`], read locks are not
/// granted until prior write locks, to prevent starvation. Therefore
/// deadlock may occur if a read lock is held by the current task, a write
/// lock attempt is made, and then a subsequent read lock attempt is made
/// by the current task.
///
/// Returns an RAII guard which will drop this read access of the `RwLock`
/// when dropped.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute locks in the order they
/// were requested. Cancelling a call to `read` makes you lose your place in
/// the queue.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = Arc::new(RwLock::new(1));
/// let c_lock = lock.clone();
///
/// let n = lock.read().await;
/// assert_eq!(*n, 1);
///
/// tokio::spawn(async move {
/// // While main has an active read lock, we acquire one too.
/// let r = c_lock.read().await;
/// assert_eq!(*r, 1);
/// }).await.expect("The spawned task has panicked");
///
/// // Drop the guard after the spawned task finishes.
/// drop(n);
/// }
/// ```
pub async fn read(&self) -> RwLockReadGuard<'_, T> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.s.acquire(1),
self.resource_span.clone(),
"RwLock::read",
"poll",
false,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.s.acquire(1);
inner.await.unwrap_or_else(|_| {
// The semaphore was closed. but, we never explicitly close it, and we have a
// handle to it through the Arc, which means that this can never happen.
unreachable!()
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
RwLockReadGuard {
s: &self.s,
data: self.c.get(),
marker: marker::PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: self.resource_span.clone(),
}
}
/// Blockingly locks this `RwLock` with shared read access.
///
/// This method is intended for use cases where you
/// need to use this rwlock in asynchronous code as well as in synchronous code.
///
/// Returns an RAII guard which will drop the read access of this `RwLock` when dropped.
///
/// # Panics
///
/// This function panics if called within an asynchronous execution context.
///
/// - If you find yourself in an asynchronous execution context and needing
/// to call some (synchronous) function which performs one of these
/// `blocking_` operations, then consider wrapping that call inside
/// [`spawn_blocking()`][crate::runtime::Handle::spawn_blocking]
/// (or [`block_in_place()`][crate::task::block_in_place]).
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let rwlock = Arc::new(RwLock::new(1));
/// let mut write_lock = rwlock.write().await;
///
/// let blocking_task = tokio::task::spawn_blocking({
/// let rwlock = Arc::clone(&rwlock);
/// move || {
/// // This shall block until the `write_lock` is released.
/// let read_lock = rwlock.blocking_read();
/// assert_eq!(*read_lock, 0);
/// }
/// });
///
/// *write_lock -= 1;
/// drop(write_lock); // release the lock.
///
/// // Await the completion of the blocking task.
/// blocking_task.await.unwrap();
///
/// // Assert uncontended.
/// assert!(rwlock.try_write().is_ok());
/// }
/// ```
#[track_caller]
#[cfg(feature = "sync")]
pub fn blocking_read(&self) -> RwLockReadGuard<'_, T> {
crate::future::block_on(self.read())
}
/// Locks this `RwLock` with shared read access, causing the current task
/// to yield until the lock has been acquired.
///
/// The calling task will yield until there are no writers which hold the
/// lock. There may be other readers inside the lock when the task resumes.
///
/// This method is identical to [`RwLock::read`], except that the returned
/// guard references the `RwLock` with an [`Arc`] rather than by borrowing
/// it. Therefore, the `RwLock` must be wrapped in an `Arc` to call this
/// method, and the guard will live for the `'static` lifetime, as it keeps
/// the `RwLock` alive by holding an `Arc`.
///
/// Note that under the priority policy of [`RwLock`], read locks are not
/// granted until prior write locks, to prevent starvation. Therefore
/// deadlock may occur if a read lock is held by the current task, a write
/// lock attempt is made, and then a subsequent read lock attempt is made
/// by the current task.
///
/// Returns an RAII guard which will drop this read access of the `RwLock`
/// when dropped.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute locks in the order they
/// were requested. Cancelling a call to `read_owned` makes you lose your
/// place in the queue.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = Arc::new(RwLock::new(1));
/// let c_lock = lock.clone();
///
/// let n = lock.read_owned().await;
/// assert_eq!(*n, 1);
///
/// tokio::spawn(async move {
/// // While main has an active read lock, we acquire one too.
/// let r = c_lock.read_owned().await;
/// assert_eq!(*r, 1);
/// }).await.expect("The spawned task has panicked");
///
/// // Drop the guard after the spawned task finishes.
/// drop(n);
///}
/// ```
pub async fn read_owned(self: Arc<Self>) -> OwnedRwLockReadGuard<T> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.s.acquire(1),
self.resource_span.clone(),
"RwLock::read_owned",
"poll",
false,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.s.acquire(1);
inner.await.unwrap_or_else(|_| {
// The semaphore was closed. but, we never explicitly close it, and we have a
// handle to it through the Arc, which means that this can never happen.
unreachable!()
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = self.resource_span.clone();
OwnedRwLockReadGuard {
data: self.c.get(),
lock: ManuallyDrop::new(self),
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
}
}
/// Attempts to acquire this `RwLock` with shared read access.
///
/// If the access couldn't be acquired immediately, returns [`TryLockError`].
/// Otherwise, an RAII guard is returned which will release read access
/// when dropped.
///
/// [`TryLockError`]: TryLockError
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = Arc::new(RwLock::new(1));
/// let c_lock = lock.clone();
///
/// let v = lock.try_read().unwrap();
/// assert_eq!(*v, 1);
///
/// tokio::spawn(async move {
/// // While main has an active read lock, we acquire one too.
/// let n = c_lock.read().await;
/// assert_eq!(*n, 1);
/// }).await.expect("The spawned task has panicked");
///
/// // Drop the guard when spawned task finishes.
/// drop(v);
/// }
/// ```
pub fn try_read(&self) -> Result<RwLockReadGuard<'_, T>, TryLockError> {
match self.s.try_acquire(1) {
Ok(permit) => permit,
Err(TryAcquireError::NoPermits) => return Err(TryLockError(())),
Err(TryAcquireError::Closed) => unreachable!(),
}
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
Ok(RwLockReadGuard {
s: &self.s,
data: self.c.get(),
marker: marker::PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: self.resource_span.clone(),
})
}
/// Attempts to acquire this `RwLock` with shared read access.
///
/// If the access couldn't be acquired immediately, returns [`TryLockError`].
/// Otherwise, an RAII guard is returned which will release read access
/// when dropped.
///
/// This method is identical to [`RwLock::try_read`], except that the
/// returned guard references the `RwLock` with an [`Arc`] rather than by
/// borrowing it. Therefore, the `RwLock` must be wrapped in an `Arc` to
/// call this method, and the guard will live for the `'static` lifetime,
/// as it keeps the `RwLock` alive by holding an `Arc`.
///
/// [`TryLockError`]: TryLockError
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = Arc::new(RwLock::new(1));
/// let c_lock = lock.clone();
///
/// let v = lock.try_read_owned().unwrap();
/// assert_eq!(*v, 1);
///
/// tokio::spawn(async move {
/// // While main has an active read lock, we acquire one too.
/// let n = c_lock.read_owned().await;
/// assert_eq!(*n, 1);
/// }).await.expect("The spawned task has panicked");
///
/// // Drop the guard when spawned task finishes.
/// drop(v);
/// }
/// ```
pub fn try_read_owned(self: Arc<Self>) -> Result<OwnedRwLockReadGuard<T>, TryLockError> {
match self.s.try_acquire(1) {
Ok(permit) => permit,
Err(TryAcquireError::NoPermits) => return Err(TryLockError(())),
Err(TryAcquireError::Closed) => unreachable!(),
}
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = self.resource_span.clone();
Ok(OwnedRwLockReadGuard {
data: self.c.get(),
lock: ManuallyDrop::new(self),
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
})
}
/// Locks this `RwLock` with exclusive write access, causing the current
/// task to yield until the lock has been acquired.
///
/// The calling task will yield while other writers or readers currently
/// have access to the lock.
///
/// Returns an RAII guard which will drop the write access of this `RwLock`
/// when dropped.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute locks in the order they
/// were requested. Cancelling a call to `write` makes you lose your place
/// in the queue.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = RwLock::new(1);
///
/// let mut n = lock.write().await;
/// *n = 2;
///}
/// ```
pub async fn write(&self) -> RwLockWriteGuard<'_, T> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.s.acquire(self.mr),
self.resource_span.clone(),
"RwLock::write",
"poll",
false,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.s.acquire(self.mr);
inner.await.unwrap_or_else(|_| {
// The semaphore was closed. but, we never explicitly close it, and we have a
// handle to it through the Arc, which means that this can never happen.
unreachable!()
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = true,
write_locked.op = "override",
)
});
RwLockWriteGuard {
permits_acquired: self.mr,
s: &self.s,
data: self.c.get(),
marker: marker::PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: self.resource_span.clone(),
}
}
/// Blockingly locks this `RwLock` with exclusive write access.
///
/// This method is intended for use cases where you
/// need to use this rwlock in asynchronous code as well as in synchronous code.
///
/// Returns an RAII guard which will drop the write access of this `RwLock` when dropped.
///
/// # Panics
///
/// This function panics if called within an asynchronous execution context.
///
/// - If you find yourself in an asynchronous execution context and needing
/// to call some (synchronous) function which performs one of these
/// `blocking_` operations, then consider wrapping that call inside
/// [`spawn_blocking()`][crate::runtime::Handle::spawn_blocking]
/// (or [`block_in_place()`][crate::task::block_in_place]).
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::{sync::RwLock};
///
/// #[tokio::main]
/// async fn main() {
/// let rwlock = Arc::new(RwLock::new(1));
/// let read_lock = rwlock.read().await;
///
/// let blocking_task = tokio::task::spawn_blocking({
/// let rwlock = Arc::clone(&rwlock);
/// move || {
/// // This shall block until the `read_lock` is released.
/// let mut write_lock = rwlock.blocking_write();
/// *write_lock = 2;
/// }
/// });
///
/// assert_eq!(*read_lock, 1);
/// // Release the last outstanding read lock.
/// drop(read_lock);
///
/// // Await the completion of the blocking task.
/// blocking_task.await.unwrap();
///
/// // Assert uncontended.
/// let read_lock = rwlock.try_read().unwrap();
/// assert_eq!(*read_lock, 2);
/// }
/// ```
#[track_caller]
#[cfg(feature = "sync")]
pub fn blocking_write(&self) -> RwLockWriteGuard<'_, T> {
crate::future::block_on(self.write())
}
/// Locks this `RwLock` with exclusive write access, causing the current
/// task to yield until the lock has been acquired.
///
/// The calling task will yield while other writers or readers currently
/// have access to the lock.
///
/// This method is identical to [`RwLock::write`], except that the returned
/// guard references the `RwLock` with an [`Arc`] rather than by borrowing
/// it. Therefore, the `RwLock` must be wrapped in an `Arc` to call this
/// method, and the guard will live for the `'static` lifetime, as it keeps
/// the `RwLock` alive by holding an `Arc`.
///
/// Returns an RAII guard which will drop the write access of this `RwLock`
/// when dropped.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute locks in the order they
/// were requested. Cancelling a call to `write_owned` makes you lose your
/// place in the queue.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let lock = Arc::new(RwLock::new(1));
///
/// let mut n = lock.write_owned().await;
/// *n = 2;
///}
/// ```
pub async fn write_owned(self: Arc<Self>) -> OwnedRwLockWriteGuard<T> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.s.acquire(self.mr),
self.resource_span.clone(),
"RwLock::write_owned",
"poll",
false,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.s.acquire(self.mr);
inner.await.unwrap_or_else(|_| {
// The semaphore was closed. but, we never explicitly close it, and we have a
// handle to it through the Arc, which means that this can never happen.
unreachable!()
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = true,
write_locked.op = "override",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = self.resource_span.clone();
OwnedRwLockWriteGuard {
permits_acquired: self.mr,
data: self.c.get(),
lock: ManuallyDrop::new(self),
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
}
}
/// Attempts to acquire this `RwLock` with exclusive write access.
///
/// If the access couldn't be acquired immediately, returns [`TryLockError`].
/// Otherwise, an RAII guard is returned which will release write access
/// when dropped.
///
/// [`TryLockError`]: TryLockError
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let rw = RwLock::new(1);
///
/// let v = rw.read().await;
/// assert_eq!(*v, 1);
///
/// assert!(rw.try_write().is_err());
/// }
/// ```
pub fn try_write(&self) -> Result<RwLockWriteGuard<'_, T>, TryLockError> {
match self.s.try_acquire(self.mr) {
Ok(permit) => permit,
Err(TryAcquireError::NoPermits) => return Err(TryLockError(())),
Err(TryAcquireError::Closed) => unreachable!(),
}
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = true,
write_locked.op = "override",
)
});
Ok(RwLockWriteGuard {
permits_acquired: self.mr,
s: &self.s,
data: self.c.get(),
marker: marker::PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: self.resource_span.clone(),
})
}
/// Attempts to acquire this `RwLock` with exclusive write access.
///
/// If the access couldn't be acquired immediately, returns [`TryLockError`].
/// Otherwise, an RAII guard is returned which will release write access
/// when dropped.
///
/// This method is identical to [`RwLock::try_write`], except that the
/// returned guard references the `RwLock` with an [`Arc`] rather than by
/// borrowing it. Therefore, the `RwLock` must be wrapped in an `Arc` to
/// call this method, and the guard will live for the `'static` lifetime,
/// as it keeps the `RwLock` alive by holding an `Arc`.
///
/// [`TryLockError`]: TryLockError
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
/// let rw = Arc::new(RwLock::new(1));
///
/// let v = Arc::clone(&rw).read_owned().await;
/// assert_eq!(*v, 1);
///
/// assert!(rw.try_write_owned().is_err());
/// }
/// ```
pub fn try_write_owned(self: Arc<Self>) -> Result<OwnedRwLockWriteGuard<T>, TryLockError> {
match self.s.try_acquire(self.mr) {
Ok(permit) => permit,
Err(TryAcquireError::NoPermits) => return Err(TryLockError(())),
Err(TryAcquireError::Closed) => unreachable!(),
}
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = true,
write_locked.op = "override",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = self.resource_span.clone();
Ok(OwnedRwLockWriteGuard {
permits_acquired: self.mr,
data: self.c.get(),
lock: ManuallyDrop::new(self),
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
})
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `RwLock` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// fn main() {
/// let mut lock = RwLock::new(1);
///
/// let n = lock.get_mut();
/// *n = 2;
/// }
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe {
// Safety: This is https://github.com/rust-lang/rust/pull/76936
&mut *self.c.get()
}
}
/// Consumes the lock, returning the underlying data.
pub fn into_inner(self) -> T
where
T: Sized,
{
self.c.into_inner()
}
}
impl<T> From<T> for RwLock<T> {
fn from(s: T) -> Self {
Self::new(s)
}
}
impl<T: ?Sized> Default for RwLock<T>
where
T: Default,
{
fn default() -> Self {
Self::new(T::default())
}
}