1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
// Allow `unreachable_pub` warnings when sync is not enabled
// due to the usage of `Notify` within the `rt` feature set.
// When this module is compiled with `sync` enabled we will warn on
// this lint. When `rt` is enabled we use `pub(crate)` which
// triggers this warning but it is safe to ignore in this case.
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))]
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::Mutex;
use crate::util::linked_list::{self, GuardedLinkedList, LinkedList};
use crate::util::WakeList;
use std::cell::UnsafeCell;
use std::future::Future;
use std::marker::PhantomPinned;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::SeqCst;
use std::task::{Context, Poll, Waker};
type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>;
type GuardedWaitList = GuardedLinkedList<Waiter, <Waiter as linked_list::Link>::Target>;
/// Notifies a single task to wake up.
///
/// `Notify` provides a basic mechanism to notify a single task of an event.
/// `Notify` itself does not carry any data. Instead, it is to be used to signal
/// another task to perform an operation.
///
/// A `Notify` can be thought of as a [`Semaphore`] starting with 0 permits. The
/// [`notified().await`] method waits for a permit to become available, and
/// [`notify_one()`] sets a permit **if there currently are no available
/// permits**.
///
/// The synchronization details of `Notify` are similar to
/// [`thread::park`][park] and [`Thread::unpark`][unpark] from std. A [`Notify`]
/// value contains a single permit. [`notified().await`] waits for the permit to
/// be made available, consumes the permit, and resumes. [`notify_one()`] sets
/// the permit, waking a pending task if there is one.
///
/// If `notify_one()` is called **before** `notified().await`, then the next
/// call to `notified().await` will complete immediately, consuming the permit.
/// Any subsequent calls to `notified().await` will wait for a new permit.
///
/// If `notify_one()` is called **multiple** times before `notified().await`,
/// only a **single** permit is stored. The next call to `notified().await` will
/// complete immediately, but the one after will wait for a new permit.
///
/// # Examples
///
/// Basic usage.
///
/// ```
/// use tokio::sync::Notify;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
/// let notify = Arc::new(Notify::new());
/// let notify2 = notify.clone();
///
/// let handle = tokio::spawn(async move {
/// notify2.notified().await;
/// println!("received notification");
/// });
///
/// println!("sending notification");
/// notify.notify_one();
///
/// // Wait for task to receive notification.
/// handle.await.unwrap();
/// }
/// ```
///
/// Unbound multi-producer single-consumer (mpsc) channel.
///
/// No wakeups can be lost when using this channel because the call to
/// `notify_one()` will store a permit in the `Notify`, which the following call
/// to `notified()` will consume.
///
/// ```
/// use tokio::sync::Notify;
///
/// use std::collections::VecDeque;
/// use std::sync::Mutex;
///
/// struct Channel<T> {
/// values: Mutex<VecDeque<T>>,
/// notify: Notify,
/// }
///
/// impl<T> Channel<T> {
/// pub fn send(&self, value: T) {
/// self.values.lock().unwrap()
/// .push_back(value);
///
/// // Notify the consumer a value is available
/// self.notify.notify_one();
/// }
///
/// // This is a single-consumer channel, so several concurrent calls to
/// // `recv` are not allowed.
/// pub async fn recv(&self) -> T {
/// loop {
/// // Drain values
/// if let Some(value) = self.values.lock().unwrap().pop_front() {
/// return value;
/// }
///
/// // Wait for values to be available
/// self.notify.notified().await;
/// }
/// }
/// }
/// ```
///
/// Unbound multi-producer multi-consumer (mpmc) channel.
///
/// The call to [`enable`] is important because otherwise if you have two
/// calls to `recv` and two calls to `send` in parallel, the following could
/// happen:
///
/// 1. Both calls to `try_recv` return `None`.
/// 2. Both new elements are added to the vector.
/// 3. The `notify_one` method is called twice, adding only a single
/// permit to the `Notify`.
/// 4. Both calls to `recv` reach the `Notified` future. One of them
/// consumes the permit, and the other sleeps forever.
///
/// By adding the `Notified` futures to the list by calling `enable` before
/// `try_recv`, the `notify_one` calls in step three would remove the
/// futures from the list and mark them notified instead of adding a permit
/// to the `Notify`. This ensures that both futures are woken.
///
/// Notice that this failure can only happen if there are two concurrent calls
/// to `recv`. This is why the mpsc example above does not require a call to
/// `enable`.
///
/// ```
/// use tokio::sync::Notify;
///
/// use std::collections::VecDeque;
/// use std::sync::Mutex;
///
/// struct Channel<T> {
/// messages: Mutex<VecDeque<T>>,
/// notify_on_sent: Notify,
/// }
///
/// impl<T> Channel<T> {
/// pub fn send(&self, msg: T) {
/// let mut locked_queue = self.messages.lock().unwrap();
/// locked_queue.push_back(msg);
/// drop(locked_queue);
///
/// // Send a notification to one of the calls currently
/// // waiting in a call to `recv`.
/// self.notify_on_sent.notify_one();
/// }
///
/// pub fn try_recv(&self) -> Option<T> {
/// let mut locked_queue = self.messages.lock().unwrap();
/// locked_queue.pop_front()
/// }
///
/// pub async fn recv(&self) -> T {
/// let future = self.notify_on_sent.notified();
/// tokio::pin!(future);
///
/// loop {
/// // Make sure that no wakeup is lost if we get
/// // `None` from `try_recv`.
/// future.as_mut().enable();
///
/// if let Some(msg) = self.try_recv() {
/// return msg;
/// }
///
/// // Wait for a call to `notify_one`.
/// //
/// // This uses `.as_mut()` to avoid consuming the future,
/// // which lets us call `Pin::set` below.
/// future.as_mut().await;
///
/// // Reset the future in case another call to
/// // `try_recv` got the message before us.
/// future.set(self.notify_on_sent.notified());
/// }
/// }
/// }
/// ```
///
/// [park]: std::thread::park
/// [unpark]: std::thread::Thread::unpark
/// [`notified().await`]: Notify::notified()
/// [`notify_one()`]: Notify::notify_one()
/// [`enable`]: Notified::enable()
/// [`Semaphore`]: crate::sync::Semaphore
#[derive(Debug)]
pub struct Notify {
// `state` uses 2 bits to store one of `EMPTY`,
// `WAITING` or `NOTIFIED`. The rest of the bits
// are used to store the number of times `notify_waiters`
// was called.
//
// Throughout the code there are two assumptions:
// - state can be transitioned *from* `WAITING` only if
// `waiters` lock is held
// - number of times `notify_waiters` was called can
// be modified only if `waiters` lock is held
state: AtomicUsize,
waiters: Mutex<WaitList>,
}
#[derive(Debug, Clone, Copy)]
enum NotificationType {
// Notification triggered by calling `notify_waiters`
AllWaiters,
// Notification triggered by calling `notify_one`
OneWaiter,
}
#[derive(Debug)]
struct Waiter {
/// Intrusive linked-list pointers.
pointers: linked_list::Pointers<Waiter>,
/// Waiting task's waker.
waker: Option<Waker>,
/// `true` if the notification has been assigned to this waiter.
notified: Option<NotificationType>,
/// Should not be `Unpin`.
_p: PhantomPinned,
}
impl Waiter {
fn new() -> Waiter {
Waiter {
pointers: linked_list::Pointers::new(),
waker: None,
notified: None,
_p: PhantomPinned,
}
}
}
generate_addr_of_methods! {
impl<> Waiter {
unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
&self.pointers
}
}
}
/// List used in `Notify::notify_waiters`. It wraps a guarded linked list
/// and gates the access to it on `notify.waiters` mutex. It also empties
/// the list on drop.
struct NotifyWaitersList<'a> {
list: GuardedWaitList,
is_empty: bool,
notify: &'a Notify,
}
impl<'a> NotifyWaitersList<'a> {
fn new(
unguarded_list: WaitList,
guard: Pin<&'a mut UnsafeCell<Waiter>>,
notify: &'a Notify,
) -> NotifyWaitersList<'a> {
// Safety: pointer to the guarding waiter is not null.
let guard_ptr = unsafe { NonNull::new_unchecked(guard.get()) };
let list = unguarded_list.into_guarded(guard_ptr);
NotifyWaitersList {
list,
is_empty: false,
notify,
}
}
/// Removes the last element from the guarded list. Modifying this list
/// requires an exclusive access to the main list in `Notify`.
fn pop_back_locked(&mut self, _waiters: &mut WaitList) -> Option<NonNull<Waiter>> {
let result = self.list.pop_back();
if result.is_none() {
// Save information about emptiness to avoid waiting for lock
// in the destructor.
self.is_empty = true;
}
result
}
}
impl Drop for NotifyWaitersList<'_> {
fn drop(&mut self) {
// If the list is not empty, we unlink all waiters from it.
// We do not wake the waiters to avoid double panics.
if !self.is_empty {
let _lock_guard = self.notify.waiters.lock();
while let Some(mut waiter) = self.list.pop_back() {
// Safety: we hold the lock.
let waiter = unsafe { waiter.as_mut() };
waiter.notified = Some(NotificationType::AllWaiters);
}
}
}
}
/// Future returned from [`Notify::notified()`].
///
/// This future is fused, so once it has completed, any future calls to poll
/// will immediately return `Poll::Ready`.
#[derive(Debug)]
pub struct Notified<'a> {
/// The `Notify` being received on.
notify: &'a Notify,
/// The current state of the receiving process.
state: State,
/// Number of calls to `notify_waiters` at the time of creation.
notify_waiters_calls: usize,
/// Entry in the waiter `LinkedList`.
waiter: UnsafeCell<Waiter>,
}
unsafe impl<'a> Send for Notified<'a> {}
unsafe impl<'a> Sync for Notified<'a> {}
#[derive(Debug)]
enum State {
Init,
Waiting,
Done,
}
const NOTIFY_WAITERS_SHIFT: usize = 2;
const STATE_MASK: usize = (1 << NOTIFY_WAITERS_SHIFT) - 1;
const NOTIFY_WAITERS_CALLS_MASK: usize = !STATE_MASK;
/// Initial "idle" state.
const EMPTY: usize = 0;
/// One or more threads are currently waiting to be notified.
const WAITING: usize = 1;
/// Pending notification.
const NOTIFIED: usize = 2;
fn set_state(data: usize, state: usize) -> usize {
(data & NOTIFY_WAITERS_CALLS_MASK) | (state & STATE_MASK)
}
fn get_state(data: usize) -> usize {
data & STATE_MASK
}
fn get_num_notify_waiters_calls(data: usize) -> usize {
(data & NOTIFY_WAITERS_CALLS_MASK) >> NOTIFY_WAITERS_SHIFT
}
fn inc_num_notify_waiters_calls(data: usize) -> usize {
data + (1 << NOTIFY_WAITERS_SHIFT)
}
fn atomic_inc_num_notify_waiters_calls(data: &AtomicUsize) {
data.fetch_add(1 << NOTIFY_WAITERS_SHIFT, SeqCst);
}
impl Notify {
/// Create a new `Notify`, initialized without a permit.
///
/// # Examples
///
/// ```
/// use tokio::sync::Notify;
///
/// let notify = Notify::new();
/// ```
pub fn new() -> Notify {
Notify {
state: AtomicUsize::new(0),
waiters: Mutex::new(LinkedList::new()),
}
}
/// Create a new `Notify`, initialized without a permit.
///
/// # Examples
///
/// ```
/// use tokio::sync::Notify;
///
/// static NOTIFY: Notify = Notify::const_new();
/// ```
#[cfg(all(feature = "parking_lot", not(all(loom, test))))]
#[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))]
pub const fn const_new() -> Notify {
Notify {
state: AtomicUsize::new(0),
waiters: Mutex::const_new(LinkedList::new()),
}
}
/// Wait for a notification.
///
/// Equivalent to:
///
/// ```ignore
/// async fn notified(&self);
/// ```
///
/// Each `Notify` value holds a single permit. If a permit is available from
/// an earlier call to [`notify_one()`], then `notified().await` will complete
/// immediately, consuming that permit. Otherwise, `notified().await` waits
/// for a permit to be made available by the next call to `notify_one()`.
///
/// The `Notified` future is not guaranteed to receive wakeups from calls to
/// `notify_one()` if it has not yet been polled. See the documentation for
/// [`Notified::enable()`] for more details.
///
/// The `Notified` future is guaranteed to receive wakeups from
/// `notify_waiters()` as soon as it has been created, even if it has not
/// yet been polled.
///
/// [`notify_one()`]: Notify::notify_one
/// [`Notified::enable()`]: Notified::enable
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute notifications in the order
/// they were requested. Cancelling a call to `notified` makes you lose your
/// place in the queue.
///
/// # Examples
///
/// ```
/// use tokio::sync::Notify;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
/// let notify = Arc::new(Notify::new());
/// let notify2 = notify.clone();
///
/// tokio::spawn(async move {
/// notify2.notified().await;
/// println!("received notification");
/// });
///
/// println!("sending notification");
/// notify.notify_one();
/// }
/// ```
pub fn notified(&self) -> Notified<'_> {
// we load the number of times notify_waiters
// was called and store that in the future.
let state = self.state.load(SeqCst);
Notified {
notify: self,
state: State::Init,
notify_waiters_calls: get_num_notify_waiters_calls(state),
waiter: UnsafeCell::new(Waiter::new()),
}
}
/// Notifies a waiting task.
///
/// If a task is currently waiting, that task is notified. Otherwise, a
/// permit is stored in this `Notify` value and the **next** call to
/// [`notified().await`] will complete immediately consuming the permit made
/// available by this call to `notify_one()`.
///
/// At most one permit may be stored by `Notify`. Many sequential calls to
/// `notify_one` will result in a single permit being stored. The next call to
/// `notified().await` will complete immediately, but the one after that
/// will wait.
///
/// [`notified().await`]: Notify::notified()
///
/// # Examples
///
/// ```
/// use tokio::sync::Notify;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
/// let notify = Arc::new(Notify::new());
/// let notify2 = notify.clone();
///
/// tokio::spawn(async move {
/// notify2.notified().await;
/// println!("received notification");
/// });
///
/// println!("sending notification");
/// notify.notify_one();
/// }
/// ```
// Alias for old name in 0.x
#[cfg_attr(docsrs, doc(alias = "notify"))]
pub fn notify_one(&self) {
// Load the current state
let mut curr = self.state.load(SeqCst);
// If the state is `EMPTY`, transition to `NOTIFIED` and return.
while let EMPTY | NOTIFIED = get_state(curr) {
// The compare-exchange from `NOTIFIED` -> `NOTIFIED` is intended. A
// happens-before synchronization must happen between this atomic
// operation and a task calling `notified().await`.
let new = set_state(curr, NOTIFIED);
let res = self.state.compare_exchange(curr, new, SeqCst, SeqCst);
match res {
// No waiters, no further work to do
Ok(_) => return,
Err(actual) => {
curr = actual;
}
}
}
// There are waiters, the lock must be acquired to notify.
let mut waiters = self.waiters.lock();
// The state must be reloaded while the lock is held. The state may only
// transition out of WAITING while the lock is held.
curr = self.state.load(SeqCst);
if let Some(waker) = notify_locked(&mut waiters, &self.state, curr) {
drop(waiters);
waker.wake();
}
}
/// Notifies all waiting tasks.
///
/// If a task is currently waiting, that task is notified. Unlike with
/// `notify_one()`, no permit is stored to be used by the next call to
/// `notified().await`. The purpose of this method is to notify all
/// already registered waiters. Registering for notification is done by
/// acquiring an instance of the `Notified` future via calling `notified()`.
///
/// # Examples
///
/// ```
/// use tokio::sync::Notify;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
/// let notify = Arc::new(Notify::new());
/// let notify2 = notify.clone();
///
/// let notified1 = notify.notified();
/// let notified2 = notify.notified();
///
/// let handle = tokio::spawn(async move {
/// println!("sending notifications");
/// notify2.notify_waiters();
/// });
///
/// notified1.await;
/// notified2.await;
/// println!("received notifications");
/// }
/// ```
pub fn notify_waiters(&self) {
let mut waiters = self.waiters.lock();
// The state must be loaded while the lock is held. The state may only
// transition out of WAITING while the lock is held.
let curr = self.state.load(SeqCst);
if matches!(get_state(curr), EMPTY | NOTIFIED) {
// There are no waiting tasks. All we need to do is increment the
// number of times this method was called.
atomic_inc_num_notify_waiters_calls(&self.state);
return;
}
// Increment the number of times this method was called
// and transition to empty.
let new_state = set_state(inc_num_notify_waiters_calls(curr), EMPTY);
self.state.store(new_state, SeqCst);
// It is critical for `GuardedLinkedList` safety that the guard node is
// pinned in memory and is not dropped until the guarded list is dropped.
let guard = UnsafeCell::new(Waiter::new());
pin!(guard);
// We move all waiters to a secondary list. It uses a `GuardedLinkedList`
// underneath to allow every waiter to safely remove itself from it.
//
// * This list will be still guarded by the `waiters` lock.
// `NotifyWaitersList` wrapper makes sure we hold the lock to modify it.
// * This wrapper will empty the list on drop. It is critical for safety
// that we will not leave any list entry with a pointer to the local
// guard node after this function returns / panics.
let mut list = NotifyWaitersList::new(std::mem::take(&mut *waiters), guard, self);
let mut wakers = WakeList::new();
'outer: loop {
while wakers.can_push() {
match list.pop_back_locked(&mut waiters) {
Some(mut waiter) => {
// Safety: `waiters` lock is still held.
let waiter = unsafe { waiter.as_mut() };
assert!(waiter.notified.is_none());
waiter.notified = Some(NotificationType::AllWaiters);
if let Some(waker) = waiter.waker.take() {
wakers.push(waker);
}
}
None => {
break 'outer;
}
}
}
// Release the lock before notifying.
drop(waiters);
// One of the wakers may panic, but the remaining waiters will still
// be unlinked from the list in `NotifyWaitersList` destructor.
wakers.wake_all();
// Acquire the lock again.
waiters = self.waiters.lock();
}
// Release the lock before notifying
drop(waiters);
wakers.wake_all();
}
}
impl Default for Notify {
fn default() -> Notify {
Notify::new()
}
}
impl UnwindSafe for Notify {}
impl RefUnwindSafe for Notify {}
fn notify_locked(waiters: &mut WaitList, state: &AtomicUsize, curr: usize) -> Option<Waker> {
loop {
match get_state(curr) {
EMPTY | NOTIFIED => {
let res = state.compare_exchange(curr, set_state(curr, NOTIFIED), SeqCst, SeqCst);
match res {
Ok(_) => return None,
Err(actual) => {
let actual_state = get_state(actual);
assert!(actual_state == EMPTY || actual_state == NOTIFIED);
state.store(set_state(actual, NOTIFIED), SeqCst);
return None;
}
}
}
WAITING => {
// At this point, it is guaranteed that the state will not
// concurrently change as holding the lock is required to
// transition **out** of `WAITING`.
//
// Get a pending waiter
let mut waiter = waiters.pop_back().unwrap();
// Safety: `waiters` lock is still held.
let waiter = unsafe { waiter.as_mut() };
assert!(waiter.notified.is_none());
waiter.notified = Some(NotificationType::OneWaiter);
let waker = waiter.waker.take();
if waiters.is_empty() {
// As this the **final** waiter in the list, the state
// must be transitioned to `EMPTY`. As transitioning
// **from** `WAITING` requires the lock to be held, a
// `store` is sufficient.
state.store(set_state(curr, EMPTY), SeqCst);
}
return waker;
}
_ => unreachable!(),
}
}
}
// ===== impl Notified =====
impl Notified<'_> {
/// Adds this future to the list of futures that are ready to receive
/// wakeups from calls to [`notify_one`].
///
/// Polling the future also adds it to the list, so this method should only
/// be used if you want to add the future to the list before the first call
/// to `poll`. (In fact, this method is equivalent to calling `poll` except
/// that no `Waker` is registered.)
///
/// This has no effect on notifications sent using [`notify_waiters`], which
/// are received as long as they happen after the creation of the `Notified`
/// regardless of whether `enable` or `poll` has been called.
///
/// This method returns true if the `Notified` is ready. This happens in the
/// following situations:
///
/// 1. The `notify_waiters` method was called between the creation of the
/// `Notified` and the call to this method.
/// 2. This is the first call to `enable` or `poll` on this future, and the
/// `Notify` was holding a permit from a previous call to `notify_one`.
/// The call consumes the permit in that case.
/// 3. The future has previously been enabled or polled, and it has since
/// then been marked ready by either consuming a permit from the
/// `Notify`, or by a call to `notify_one` or `notify_waiters` that
/// removed it from the list of futures ready to receive wakeups.
///
/// If this method returns true, any future calls to poll on the same future
/// will immediately return `Poll::Ready`.
///
/// # Examples
///
/// Unbound multi-producer multi-consumer (mpmc) channel.
///
/// The call to `enable` is important because otherwise if you have two
/// calls to `recv` and two calls to `send` in parallel, the following could
/// happen:
///
/// 1. Both calls to `try_recv` return `None`.
/// 2. Both new elements are added to the vector.
/// 3. The `notify_one` method is called twice, adding only a single
/// permit to the `Notify`.
/// 4. Both calls to `recv` reach the `Notified` future. One of them
/// consumes the permit, and the other sleeps forever.
///
/// By adding the `Notified` futures to the list by calling `enable` before
/// `try_recv`, the `notify_one` calls in step three would remove the
/// futures from the list and mark them notified instead of adding a permit
/// to the `Notify`. This ensures that both futures are woken.
///
/// ```
/// use tokio::sync::Notify;
///
/// use std::collections::VecDeque;
/// use std::sync::Mutex;
///
/// struct Channel<T> {
/// messages: Mutex<VecDeque<T>>,
/// notify_on_sent: Notify,
/// }
///
/// impl<T> Channel<T> {
/// pub fn send(&self, msg: T) {
/// let mut locked_queue = self.messages.lock().unwrap();
/// locked_queue.push_back(msg);
/// drop(locked_queue);
///
/// // Send a notification to one of the calls currently
/// // waiting in a call to `recv`.
/// self.notify_on_sent.notify_one();
/// }
///
/// pub fn try_recv(&self) -> Option<T> {
/// let mut locked_queue = self.messages.lock().unwrap();
/// locked_queue.pop_front()
/// }
///
/// pub async fn recv(&self) -> T {
/// let future = self.notify_on_sent.notified();
/// tokio::pin!(future);
///
/// loop {
/// // Make sure that no wakeup is lost if we get
/// // `None` from `try_recv`.
/// future.as_mut().enable();
///
/// if let Some(msg) = self.try_recv() {
/// return msg;
/// }
///
/// // Wait for a call to `notify_one`.
/// //
/// // This uses `.as_mut()` to avoid consuming the future,
/// // which lets us call `Pin::set` below.
/// future.as_mut().await;
///
/// // Reset the future in case another call to
/// // `try_recv` got the message before us.
/// future.set(self.notify_on_sent.notified());
/// }
/// }
/// }
/// ```
///
/// [`notify_one`]: Notify::notify_one()
/// [`notify_waiters`]: Notify::notify_waiters()
pub fn enable(self: Pin<&mut Self>) -> bool {
self.poll_notified(None).is_ready()
}
/// A custom `project` implementation is used in place of `pin-project-lite`
/// as a custom drop implementation is needed.
fn project(self: Pin<&mut Self>) -> (&Notify, &mut State, &usize, &UnsafeCell<Waiter>) {
unsafe {
// Safety: `notify`, `state` and `notify_waiters_calls` are `Unpin`.
is_unpin::<&Notify>();
is_unpin::<AtomicUsize>();
is_unpin::<usize>();
let me = self.get_unchecked_mut();
(
me.notify,
&mut me.state,
&me.notify_waiters_calls,
&me.waiter,
)
}
}
fn poll_notified(self: Pin<&mut Self>, waker: Option<&Waker>) -> Poll<()> {
use State::*;
let (notify, state, notify_waiters_calls, waiter) = self.project();
loop {
match *state {
Init => {
let curr = notify.state.load(SeqCst);
// Optimistically try acquiring a pending notification
let res = notify.state.compare_exchange(
set_state(curr, NOTIFIED),
set_state(curr, EMPTY),
SeqCst,
SeqCst,
);
if res.is_ok() {
// Acquired the notification
*state = Done;
return Poll::Ready(());
}
// Clone the waker before locking, a waker clone can be
// triggering arbitrary code.
let waker = waker.cloned();
// Acquire the lock and attempt to transition to the waiting
// state.
let mut waiters = notify.waiters.lock();
// Reload the state with the lock held
let mut curr = notify.state.load(SeqCst);
// if notify_waiters has been called after the future
// was created, then we are done
if get_num_notify_waiters_calls(curr) != *notify_waiters_calls {
*state = Done;
return Poll::Ready(());
}
// Transition the state to WAITING.
loop {
match get_state(curr) {
EMPTY => {
// Transition to WAITING
let res = notify.state.compare_exchange(
set_state(curr, EMPTY),
set_state(curr, WAITING),
SeqCst,
SeqCst,
);
if let Err(actual) = res {
assert_eq!(get_state(actual), NOTIFIED);
curr = actual;
} else {
break;
}
}
WAITING => break,
NOTIFIED => {
// Try consuming the notification
let res = notify.state.compare_exchange(
set_state(curr, NOTIFIED),
set_state(curr, EMPTY),
SeqCst,
SeqCst,
);
match res {
Ok(_) => {
// Acquired the notification
*state = Done;
return Poll::Ready(());
}
Err(actual) => {
assert_eq!(get_state(actual), EMPTY);
curr = actual;
}
}
}
_ => unreachable!(),
}
}
let mut old_waker = None;
if waker.is_some() {
// Safety: called while locked.
//
// The use of `old_waiter` here is not necessary, as the field is always
// None when we reach this line.
unsafe {
old_waker = std::mem::replace(&mut (*waiter.get()).waker, waker);
}
}
// Insert the waiter into the linked list
//
// safety: pointers from `UnsafeCell` are never null.
waiters.push_front(unsafe { NonNull::new_unchecked(waiter.get()) });
*state = Waiting;
drop(waiters);
drop(old_waker);
return Poll::Pending;
}
Waiting => {
// Currently in the "Waiting" state, implying the caller has a waiter stored in
// a waiter list (guarded by `notify.waiters`). In order to access the waker
// fields, we must acquire the lock.
let mut waiters = notify.waiters.lock();
// Load the state with the lock held.
let curr = notify.state.load(SeqCst);
// Safety: called while locked
let w = unsafe { &mut *waiter.get() };
let mut old_waker = None;
if w.notified.is_some() {
// Our waker has been notified and our waiter is already removed from
// the list. Reset the notification and convert to `Done`.
old_waker = std::mem::take(&mut w.waker);
w.notified = None;
*state = Done;
} else if get_num_notify_waiters_calls(curr) != *notify_waiters_calls {
// Before we add a waiter to the list we check if these numbers are
// different while holding the lock. If these numbers are different now,
// it means that there is a call to `notify_waiters` in progress and this
// waiter must be contained by a guarded list used in `notify_waiters`.
// We can treat the waiter as notified and remove it from the list, as
// it would have been notified in the `notify_waiters` call anyways.
old_waker = std::mem::take(&mut w.waker);
// Safety: we hold the lock, so we have an exclusive access to the list.
// The list is used in `notify_waiters`, so it must be guarded.
unsafe { waiters.remove(NonNull::new_unchecked(w)) };
*state = Done;
} else {
// Update the waker, if necessary.
if let Some(waker) = waker {
let should_update = match w.waker.as_ref() {
Some(current_waker) => !current_waker.will_wake(waker),
None => true,
};
if should_update {
old_waker = std::mem::replace(&mut w.waker, Some(waker.clone()));
}
}
// Drop the old waker after releasing the lock.
drop(waiters);
drop(old_waker);
return Poll::Pending;
}
// Explicit drop of the lock to indicate the scope that the
// lock is held. Because holding the lock is required to
// ensure safe access to fields not held within the lock, it
// is helpful to visualize the scope of the critical
// section.
drop(waiters);
// Drop the old waker after releasing the lock.
drop(old_waker);
}
Done => {
return Poll::Ready(());
}
}
}
}
}
impl Future for Notified<'_> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
self.poll_notified(Some(cx.waker()))
}
}
impl Drop for Notified<'_> {
fn drop(&mut self) {
use State::*;
// Safety: The type only transitions to a "Waiting" state when pinned.
let (notify, state, _, waiter) = unsafe { Pin::new_unchecked(self).project() };
// This is where we ensure safety. The `Notified` value is being
// dropped, which means we must ensure that the waiter entry is no
// longer stored in the linked list.
if matches!(*state, Waiting) {
let mut waiters = notify.waiters.lock();
let mut notify_state = notify.state.load(SeqCst);
// remove the entry from the list (if not already removed)
//
// Safety: we hold the lock, so we have an exclusive access to every list the
// waiter may be contained in. If the node is not contained in the `waiters`
// list, then it is contained by a guarded list used by `notify_waiters` and
// in such case it must be a middle node.
unsafe { waiters.remove(NonNull::new_unchecked(waiter.get())) };
if waiters.is_empty() && get_state(notify_state) == WAITING {
notify_state = set_state(notify_state, EMPTY);
notify.state.store(notify_state, SeqCst);
}
// See if the node was notified but not received. In this case, if
// the notification was triggered via `notify_one`, it must be sent
// to the next waiter.
//
// Safety: with the entry removed from the linked list, there can be
// no concurrent access to the entry
if matches!(
unsafe { (*waiter.get()).notified },
Some(NotificationType::OneWaiter)
) {
if let Some(waker) = notify_locked(&mut waiters, ¬ify.state, notify_state) {
drop(waiters);
waker.wake();
}
}
}
}
}
/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
type Handle = NonNull<Waiter>;
type Target = Waiter;
fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
*handle
}
unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
ptr
}
unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
Waiter::addr_of_pointers(target)
}
}
fn is_unpin<T: Unpin>() {}