1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
//! HTTP Server
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.
//!
//! There are two levels of APIs provide for constructing HTTP servers:
//!
//! - The higher-level [`Server`](Server) type.
//! - The lower-level [`conn`](server::conn) module.
//!
//! # Server
//!
//! The [`Server`](Server) is main way to start listening for HTTP requests.
//! It wraps a listener with a [`MakeService`](::service), and then should
//! be executed to start serving requests.
//!
//! [`Server`](Server) accepts connections in both HTTP1 and HTTP2 by default.
//!
//! ## Example
//!
//! ```no_run
//! extern crate hyper;
//!
//! use hyper::{Body, Response, Server};
//! use hyper::service::service_fn_ok;
//!
//! # #[cfg(feature = "runtime")]
//! fn main() {
//! # use hyper::rt::Future;
//! // Construct our SocketAddr to listen on...
//! let addr = ([127, 0, 0, 1], 3000).into();
//!
//! // And a MakeService to handle each connection...
//! let make_service = || {
//! service_fn_ok(|_req| {
//! Response::new(Body::from("Hello World"))
//! })
//! };
//!
//! // Then bind and serve...
//! let server = Server::bind(&addr)
//! .serve(make_service);
//!
//! // Finally, spawn `server` onto an Executor...
//! hyper::rt::run(server.map_err(|e| {
//! eprintln!("server error: {}", e);
//! }));
//! }
//! # #[cfg(not(feature = "runtime"))]
//! # fn main() {}
//! ```
pub mod conn;
mod shutdown;
#[cfg(feature = "runtime")] mod tcp;
use std::error::Error as StdError;
use std::fmt;
#[cfg(feature = "runtime")] use std::net::{SocketAddr, TcpListener as StdTcpListener};
#[cfg(feature = "runtime")] use std::time::Duration;
use futures::{Future, Stream, Poll};
use tokio_io::{AsyncRead, AsyncWrite};
#[cfg(feature = "runtime")] use tokio_reactor;
use body::{Body, Payload};
use common::exec::{Exec, H2Exec, NewSvcExec};
use service::{MakeServiceRef, Service};
// Renamed `Http` as `Http_` for now so that people upgrading don't see an
// error that `hyper::server::Http` is private...
use self::conn::{Http as Http_, NoopWatcher, SpawnAll};
use self::shutdown::{Graceful, GracefulWatcher};
#[cfg(feature = "runtime")] use self::tcp::AddrIncoming;
/// A listening HTTP server that accepts connections in both HTTP1 and HTTP2 by default.
///
/// `Server` is a `Future` mapping a bound listener with a set of service
/// handlers. It is built using the [`Builder`](Builder), and the future
/// completes when the server has been shutdown. It should be run by an
/// `Executor`.
pub struct Server<I, S, E = Exec> {
spawn_all: SpawnAll<I, S, E>,
}
/// A builder for a [`Server`](Server).
#[derive(Debug)]
pub struct Builder<I, E = Exec> {
incoming: I,
protocol: Http_<E>,
}
// ===== impl Server =====
impl<I> Server<I, ()> {
/// Starts a [`Builder`](Builder) with the provided incoming stream.
pub fn builder(incoming: I) -> Builder<I> {
Builder {
incoming,
protocol: Http_::new(),
}
}
}
#[cfg(feature = "runtime")]
impl Server<AddrIncoming, ()> {
/// Binds to the provided address, and returns a [`Builder`](Builder).
///
/// # Panics
///
/// This method will panic if binding to the address fails. For a method
/// to bind to an address and return a `Result`, see `Server::try_bind`.
pub fn bind(addr: &SocketAddr) -> Builder<AddrIncoming> {
let incoming = AddrIncoming::new(addr, None)
.unwrap_or_else(|e| {
panic!("error binding to {}: {}", addr, e);
});
Server::builder(incoming)
}
/// Tries to bind to the provided address, and returns a [`Builder`](Builder).
pub fn try_bind(addr: &SocketAddr) -> ::Result<Builder<AddrIncoming>> {
AddrIncoming::new(addr, None)
.map(Server::builder)
}
/// Create a new instance from a `std::net::TcpListener` instance.
pub fn from_tcp(listener: StdTcpListener) -> Result<Builder<AddrIncoming>, ::Error> {
let handle = tokio_reactor::Handle::default();
AddrIncoming::from_std(listener, &handle)
.map(Server::builder)
}
}
#[cfg(feature = "runtime")]
impl<S, E> Server<AddrIncoming, S, E> {
/// Returns the local address that this server is bound to.
pub fn local_addr(&self) -> SocketAddr {
self.spawn_all.local_addr()
}
}
impl<I, S, E, B> Server<I, S, E>
where
I: Stream,
I::Error: Into<Box<dyn StdError + Send + Sync>>,
I::Item: AsyncRead + AsyncWrite + Send + 'static,
S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
S::Error: Into<Box<dyn StdError + Send + Sync>>,
S::Service: 'static,
B: Payload,
E: H2Exec<<S::Service as Service>::Future, B>,
E: NewSvcExec<I::Item, S::Future, S::Service, E, GracefulWatcher>,
{
/// Prepares a server to handle graceful shutdown when the provided future
/// completes.
///
/// # Example
///
/// ```
/// # extern crate hyper;
/// # extern crate futures;
/// # use futures::Future;
/// # fn main() {}
/// # #[cfg(feature = "runtime")]
/// # fn run() {
/// # use hyper::{Body, Response, Server};
/// # use hyper::service::service_fn_ok;
/// # let new_service = || {
/// # service_fn_ok(|_req| {
/// # Response::new(Body::from("Hello World"))
/// # })
/// # };
///
/// // Make a server from the previous examples...
/// let server = Server::bind(&([127, 0, 0, 1], 3000).into())
/// .serve(new_service);
///
/// // Prepare some signal for when the server should start
/// // shutting down...
/// let (tx, rx) = futures::sync::oneshot::channel::<()>();
///
/// let graceful = server
/// .with_graceful_shutdown(rx)
/// .map_err(|err| eprintln!("server error: {}", err));
///
/// // Spawn `server` onto an Executor...
/// hyper::rt::spawn(graceful);
///
/// // And later, trigger the signal by calling `tx.send(())`.
/// let _ = tx.send(());
/// # }
/// ```
pub fn with_graceful_shutdown<F>(self, signal: F) -> Graceful<I, S, F, E>
where
F: Future<Item=()>
{
Graceful::new(self.spawn_all, signal)
}
}
impl<I, S, B, E> Future for Server<I, S, E>
where
I: Stream,
I::Error: Into<Box<dyn StdError + Send + Sync>>,
I::Item: AsyncRead + AsyncWrite + Send + 'static,
S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
S::Error: Into<Box<dyn StdError + Send + Sync>>,
S::Service: 'static,
B: Payload,
E: H2Exec<<S::Service as Service>::Future, B>,
E: NewSvcExec<I::Item, S::Future, S::Service, E, NoopWatcher>,
{
type Item = ();
type Error = ::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
self.spawn_all.poll_watch(&NoopWatcher)
}
}
impl<I: fmt::Debug, S: fmt::Debug> fmt::Debug for Server<I, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Server")
.field("listener", &self.spawn_all.incoming_ref())
.finish()
}
}
// ===== impl Builder =====
impl<I, E> Builder<I, E> {
/// Start a new builder, wrapping an incoming stream and low-level options.
///
/// For a more convenient constructor, see [`Server::bind`](Server::bind).
pub fn new(incoming: I, protocol: Http_<E>) -> Self {
Builder {
incoming,
protocol,
}
}
/// Sets whether to use keep-alive for HTTP/1 connections.
///
/// Default is `true`.
pub fn http1_keepalive(mut self, val: bool) -> Self {
self.protocol.keep_alive(val);
self
}
/// Set whether HTTP/1 connections should support half-closures.
///
/// Clients can chose to shutdown their write-side while waiting
/// for the server to respond. Setting this to `false` will
/// automatically close any connection immediately if `read`
/// detects an EOF.
///
/// Default is `true`.
pub fn http1_half_close(mut self, val: bool) -> Self {
self.protocol.http1_half_close(val);
self
}
/// Sets whether HTTP/1 is required.
///
/// Default is `false`.
pub fn http1_only(mut self, val: bool) -> Self {
self.protocol.http1_only(val);
self
}
// Sets whether to bunch up HTTP/1 writes until the read buffer is empty.
//
// This isn't really desirable in most cases, only really being useful in
// silly pipeline benchmarks.
#[doc(hidden)]
pub fn http1_pipeline_flush(mut self, val: bool) -> Self {
self.protocol.pipeline_flush(val);
self
}
/// Set whether HTTP/1 connections should try to use vectored writes,
/// or always flatten into a single buffer.
///
/// # Note
///
/// Setting this to `false` may mean more copies of body data,
/// but may also improve performance when an IO transport doesn't
/// support vectored writes well, such as most TLS implementations.
///
/// Default is `true`.
pub fn http1_writev(mut self, val: bool) -> Self {
self.protocol.http1_writev(val);
self
}
/// Sets whether HTTP/2 is required.
///
/// Default is `false`.
pub fn http2_only(mut self, val: bool) -> Self {
self.protocol.http2_only(val);
self
}
// soft-deprecated? deprecation warning just seems annoying...
// reimplemented to take `self` instead of `&mut self`
#[doc(hidden)]
pub fn http2_initial_stream_window_size(&mut self, sz: impl Into<Option<u32>>) -> &mut Self {
self.protocol.http2_initial_stream_window_size(sz.into());
self
}
// soft-deprecated? deprecation warning just seems annoying...
// reimplemented to take `self` instead of `&mut self`
#[doc(hidden)]
pub fn http2_initial_connection_window_size(&mut self, sz: impl Into<Option<u32>>) -> &mut Self {
self.protocol.http2_initial_connection_window_size(sz.into());
self
}
/// Sets the [`SETTINGS_INITIAL_WINDOW_SIZE`][spec] option for HTTP2
/// stream-level flow control.
///
/// Default is 65,535
///
/// [spec]: https://http2.github.io/http2-spec/#SETTINGS_INITIAL_WINDOW_SIZE
pub fn http2_initial_stream_window_size_(mut self, sz: impl Into<Option<u32>>) -> Self {
self.protocol.http2_initial_stream_window_size(sz.into());
self
}
/// Sets the max connection-level flow control for HTTP2
///
/// Default is 65,535
pub fn http2_initial_connection_window_size_(mut self, sz: impl Into<Option<u32>>) -> Self {
self.protocol.http2_initial_connection_window_size(sz.into());
self
}
/// Sets the [`SETTINGS_MAX_CONCURRENT_STREAMS`][spec] option for HTTP2
/// connections.
///
/// Default is no limit (`None`).
///
/// [spec]: https://http2.github.io/http2-spec/#SETTINGS_MAX_CONCURRENT_STREAMS
pub fn http2_max_concurrent_streams(mut self, max: impl Into<Option<u32>>) -> Self {
self.protocol.http2_max_concurrent_streams(max.into());
self
}
/// Set the maximum buffer size.
///
/// Default is ~ 400kb.
pub fn http1_max_buf_size(mut self, val: usize) -> Self {
self.protocol.max_buf_size(val);
self
}
/// Sets the `Executor` to deal with connection tasks.
///
/// Default is `tokio::spawn`.
pub fn executor<E2>(self, executor: E2) -> Builder<I, E2> {
Builder {
incoming: self.incoming,
protocol: self.protocol.with_executor(executor),
}
}
/// Consume this `Builder`, creating a [`Server`](Server).
///
/// # Example
///
/// ```
/// # extern crate hyper;
/// # fn main() {}
/// # #[cfg(feature = "runtime")]
/// # fn run() {
/// use hyper::{Body, Response, Server};
/// use hyper::service::service_fn_ok;
///
/// // Construct our SocketAddr to listen on...
/// let addr = ([127, 0, 0, 1], 3000).into();
///
/// // And a NewService to handle each connection...
/// let new_service = || {
/// service_fn_ok(|_req| {
/// Response::new(Body::from("Hello World"))
/// })
/// };
///
/// // Then bind and serve...
/// let server = Server::bind(&addr)
/// .serve(new_service);
///
/// // Finally, spawn `server` onto an Executor...
/// # }
/// ```
pub fn serve<S, B>(self, new_service: S) -> Server<I, S, E>
where
I: Stream,
I::Error: Into<Box<dyn StdError + Send + Sync>>,
I::Item: AsyncRead + AsyncWrite + Send + 'static,
S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
S::Error: Into<Box<dyn StdError + Send + Sync>>,
S::Service: 'static,
B: Payload,
E: NewSvcExec<I::Item, S::Future, S::Service, E, NoopWatcher>,
E: H2Exec<<S::Service as Service>::Future, B>,
{
let serve = self.protocol.serve_incoming(self.incoming, new_service);
let spawn_all = serve.spawn_all();
Server {
spawn_all,
}
}
}
#[cfg(feature = "runtime")]
impl<E> Builder<AddrIncoming, E> {
/// Set whether TCP keepalive messages are enabled on accepted connections.
///
/// If `None` is specified, keepalive is disabled, otherwise the duration
/// specified will be the time to remain idle before sending TCP keepalive
/// probes.
pub fn tcp_keepalive(mut self, keepalive: Option<Duration>) -> Self {
self.incoming.set_keepalive(keepalive);
self
}
/// Set the value of `TCP_NODELAY` option for accepted connections.
pub fn tcp_nodelay(mut self, enabled: bool) -> Self {
self.incoming.set_nodelay(enabled);
self
}
/// Set whether to sleep on accept errors.
///
/// A possible scenario is that the process has hit the max open files
/// allowed, and so trying to accept a new connection will fail with
/// EMFILE. In some cases, it's preferable to just wait for some time, if
/// the application will likely close some files (or connections), and try
/// to accept the connection again. If this option is true, the error will
/// be logged at the error level, since it is still a big deal, and then
/// the listener will sleep for 1 second.
///
/// In other cases, hitting the max open files should be treat similarly
/// to being out-of-memory, and simply error (and shutdown). Setting this
/// option to false will allow that.
///
/// For more details see [`AddrIncoming::set_sleep_on_errors`]
pub fn tcp_sleep_on_accept_errors(mut self, val: bool) -> Self {
self.incoming.set_sleep_on_errors(val);
self
}
}