1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The exponential distribution.
use {Rng};
use distributions::{ziggurat_tables, Distribution};
use distributions::utils::ziggurat;
/// Samples floating-point numbers according to the exponential distribution,
/// with rate parameter `λ = 1`. This is equivalent to `Exp::new(1.0)` or
/// sampling with `-rng.gen::<f64>().ln()`, but faster.
///
/// See `Exp` for the general exponential distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. The exact
/// description in the paper was adjusted to use tables for the exponential
/// distribution rather than normal.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Exp1;
///
/// let val: f64 = SmallRng::from_entropy().sample(Exp1);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Exp1;
// This could be done via `-rng.gen::<f64>().ln()` but that is slower.
impl Distribution<f64> for Exp1 {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, _u: f64) -> f64 {
ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln()
}
ziggurat(rng, false,
&ziggurat_tables::ZIG_EXP_X,
&ziggurat_tables::ZIG_EXP_F,
pdf, zero_case)
}
}
/// The exponential distribution `Exp(lambda)`.
///
/// This distribution has density function: `f(x) = lambda * exp(-lambda * x)`
/// for `x > 0`.
///
/// Note that [`Exp1`][crate::distributions::Exp1] is an optimised implementation for `lambda = 1`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Exp, Distribution};
///
/// let exp = Exp::new(2.0);
/// let v = exp.sample(&mut rand::thread_rng());
/// println!("{} is from a Exp(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Exp {
/// `lambda` stored as `1/lambda`, since this is what we scale by.
lambda_inverse: f64
}
impl Exp {
/// Construct a new `Exp` with the given shape parameter
/// `lambda`. Panics if `lambda <= 0`.
#[inline]
pub fn new(lambda: f64) -> Exp {
assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0");
Exp { lambda_inverse: 1.0 / lambda }
}
}
impl Distribution<f64> for Exp {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
let n: f64 = rng.sample(Exp1);
n * self.lambda_inverse
}
}
#[cfg(test)]
mod test {
use distributions::Distribution;
use super::Exp;
#[test]
fn test_exp() {
let exp = Exp::new(10.0);
let mut rng = ::test::rng(221);
for _ in 0..1000 {
assert!(exp.sample(&mut rng) >= 0.0);
}
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_zero() {
Exp::new(0.0);
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_neg() {
Exp::new(-10.0);
}
}