1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The normal and derived distributions.
use Rng;
use distributions::{ziggurat_tables, Distribution, Open01};
use distributions::utils::ziggurat;
/// Samples floating-point numbers according to the normal distribution
/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
/// `Normal::new(0.0, 1.0)` but faster.
///
/// See `Normal` for the general normal distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand::distributions::StandardNormal;
///
/// let val: f64 = SmallRng::from_entropy().sample(StandardNormal);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct StandardNormal;
impl Distribution<f64> for StandardNormal {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x*x/2.0).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 {
// compute a random number in the tail by hand
// strange initial conditions, because the loop is not
// do-while, so the condition should be true on the first
// run, they get overwritten anyway (0 < 1, so these are
// good).
let mut x = 1.0f64;
let mut y = 0.0f64;
while -2.0 * y < x * x {
let x_: f64 = rng.sample(Open01);
let y_: f64 = rng.sample(Open01);
x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
y = y_.ln();
}
if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x }
}
ziggurat(rng, true, // this is symmetric
&ziggurat_tables::ZIG_NORM_X,
&ziggurat_tables::ZIG_NORM_F,
pdf, zero_case)
}
}
/// The normal distribution `N(mean, std_dev**2)`.
///
/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`]
/// for more details.
///
/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
/// standard deviation 1.
///
/// # Example
///
/// ```
/// use rand::distributions::{Normal, Distribution};
///
/// // mean 2, standard deviation 3
/// let normal = Normal::new(2.0, 3.0);
/// let v = normal.sample(&mut rand::thread_rng());
/// println!("{} is from a N(2, 9) distribution", v)
/// ```
///
/// [`StandardNormal`]: crate::distributions::StandardNormal
#[derive(Clone, Copy, Debug)]
pub struct Normal {
mean: f64,
std_dev: f64,
}
impl Normal {
/// Construct a new `Normal` distribution with the given mean and
/// standard deviation.
///
/// # Panics
///
/// Panics if `std_dev < 0`.
#[inline]
pub fn new(mean: f64, std_dev: f64) -> Normal {
assert!(std_dev >= 0.0, "Normal::new called with `std_dev` < 0");
Normal {
mean,
std_dev
}
}
}
impl Distribution<f64> for Normal {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
let n = rng.sample(StandardNormal);
self.mean + self.std_dev * n
}
}
/// The log-normal distribution `ln N(mean, std_dev**2)`.
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
/// distributed.
///
/// # Example
///
/// ```
/// use rand::distributions::{LogNormal, Distribution};
///
/// // mean 2, standard deviation 3
/// let log_normal = LogNormal::new(2.0, 3.0);
/// let v = log_normal.sample(&mut rand::thread_rng());
/// println!("{} is from an ln N(2, 9) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct LogNormal {
norm: Normal
}
impl LogNormal {
/// Construct a new `LogNormal` distribution with the given mean
/// and standard deviation.
///
/// # Panics
///
/// Panics if `std_dev < 0`.
#[inline]
pub fn new(mean: f64, std_dev: f64) -> LogNormal {
assert!(std_dev >= 0.0, "LogNormal::new called with `std_dev` < 0");
LogNormal { norm: Normal::new(mean, std_dev) }
}
}
impl Distribution<f64> for LogNormal {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
self.norm.sample(rng).exp()
}
}
#[cfg(test)]
mod tests {
use distributions::Distribution;
use super::{Normal, LogNormal};
#[test]
fn test_normal() {
let norm = Normal::new(10.0, 10.0);
let mut rng = ::test::rng(210);
for _ in 0..1000 {
norm.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_normal_invalid_sd() {
Normal::new(10.0, -1.0);
}
#[test]
fn test_log_normal() {
let lnorm = LogNormal::new(10.0, 10.0);
let mut rng = ::test::rng(211);
for _ in 0..1000 {
lnorm.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_log_normal_invalid_sd() {
LogNormal::new(10.0, -1.0);
}
}