logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The implementations of the `Standard` distribution for other built-in types.

use core::char;
use core::num::Wrapping;

use {Rng};
use distributions::{Distribution, Standard, Uniform};

// ----- Sampling distributions -----

/// Sample a `char`, uniformly distributed over ASCII letters and numbers:
/// a-z, A-Z and 0-9.
/// 
/// # Example
///
/// ```
/// use std::iter;
/// use rand::{Rng, thread_rng};
/// use rand::distributions::Alphanumeric;
/// 
/// let mut rng = thread_rng();
/// let chars: String = iter::repeat(())
///         .map(|()| rng.sample(Alphanumeric))
///         .take(7)
///         .collect();
/// println!("Random chars: {}", chars);
/// ```
#[derive(Debug)]
pub struct Alphanumeric;


// ----- Implementations of distributions -----

impl Distribution<char> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
        // A valid `char` is either in the interval `[0, 0xD800)` or
        // `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in
        // `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is
        // reserved for surrogates. This is the size of that gap.
        const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1;

        // Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it
        // seemed slower.
        let range = Uniform::new(GAP_SIZE, 0x11_0000);

        let mut n = range.sample(rng);
        if n <= 0xDFFF {
            n -= GAP_SIZE;
        }
        unsafe { char::from_u32_unchecked(n) }
    }
}

impl Distribution<char> for Alphanumeric {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
        const RANGE: u32 = 26 + 26 + 10;
        const GEN_ASCII_STR_CHARSET: &[u8] =
            b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
                abcdefghijklmnopqrstuvwxyz\
                0123456789";
        // We can pick from 62 characters. This is so close to a power of 2, 64,
        // that we can do better than `Uniform`. Use a simple bitshift and
        // rejection sampling. We do not use a bitmask, because for small RNGs
        // the most significant bits are usually of higher quality.
        loop {
            let var = rng.next_u32() >> (32 - 6);
            if var < RANGE {
                return GEN_ASCII_STR_CHARSET[var as usize] as char
            }
        }
    }
}

impl Distribution<bool> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
        // We can compare against an arbitrary bit of an u32 to get a bool.
        // Because the least significant bits of a lower quality RNG can have
        // simple patterns, we compare against the most significant bit. This is
        // easiest done using a sign test.
        (rng.next_u32() as i32) < 0
    }
}

macro_rules! tuple_impl {
    // use variables to indicate the arity of the tuple
    ($($tyvar:ident),* ) => {
        // the trailing commas are for the 1 tuple
        impl< $( $tyvar ),* >
            Distribution<( $( $tyvar ),* , )>
            for Standard
            where $( Standard: Distribution<$tyvar> ),*
        {
            #[inline]
            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) {
                (
                    // use the $tyvar's to get the appropriate number of
                    // repeats (they're not actually needed)
                    $(
                        _rng.gen::<$tyvar>()
                    ),*
                    ,
                )
            }
        }
    }
}

impl Distribution<()> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () { () }
}
tuple_impl!{A}
tuple_impl!{A, B}
tuple_impl!{A, B, C}
tuple_impl!{A, B, C, D}
tuple_impl!{A, B, C, D, E}
tuple_impl!{A, B, C, D, E, F}
tuple_impl!{A, B, C, D, E, F, G}
tuple_impl!{A, B, C, D, E, F, G, H}
tuple_impl!{A, B, C, D, E, F, G, H, I}
tuple_impl!{A, B, C, D, E, F, G, H, I, J}
tuple_impl!{A, B, C, D, E, F, G, H, I, J, K}
tuple_impl!{A, B, C, D, E, F, G, H, I, J, K, L}

macro_rules! array_impl {
    // recursive, given at least one type parameter:
    {$n:expr, $t:ident, $($ts:ident,)*} => {
        array_impl!{($n - 1), $($ts,)*}

        impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> {
            #[inline]
            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] {
                [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
            }
        }
    };
    // empty case:
    {$n:expr,} => {
        impl<T> Distribution<[T; $n]> for Standard {
            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] }
        }
    };
}

array_impl!{32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}

impl<T> Distribution<Option<T>> for Standard where Standard: Distribution<T> {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> {
        // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066
        if rng.gen::<bool>() {
            Some(rng.gen())
        } else {
            None
        }
    }
}

impl<T> Distribution<Wrapping<T>> for Standard where Standard: Distribution<T> {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> {
        Wrapping(rng.gen())
    }
}


#[cfg(test)]
mod tests {
    use {Rng, RngCore, Standard};
    use distributions::Alphanumeric;
    #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::string::String;

    #[test]
    fn test_misc() {
        let rng: &mut RngCore = &mut ::test::rng(820);
        
        rng.sample::<char, _>(Standard);
        rng.sample::<bool, _>(Standard);
    }
    
    #[cfg(feature="alloc")]
    #[test]
    fn test_chars() {
        use core::iter;
        let mut rng = ::test::rng(805);

        // Test by generating a relatively large number of chars, so we also
        // take the rejection sampling path.
        let word: String = iter::repeat(())
                .map(|()| rng.gen::<char>()).take(1000).collect();
        assert!(word.len() != 0);
    }

    #[test]
    fn test_alphanumeric() {
        let mut rng = ::test::rng(806);

        // Test by generating a relatively large number of chars, so we also
        // take the rejection sampling path.
        let mut incorrect = false;
        for _ in 0..100 {
            let c = rng.sample(Alphanumeric);
            incorrect |= !((c >= '0' && c <= '9') ||
                           (c >= 'A' && c <= 'Z') ||
                           (c >= 'a' && c <= 'z') );
        }
        assert!(incorrect == false);
    }
}