logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Utilities for random number generation
//!
//! Rand provides utilities to generate random numbers, to convert them to
//! useful types and distributions, and some randomness-related algorithms.
//!
//! # Quick Start
//!
//! To get you started quickly, the easiest and highest-level way to get
//! a random value is to use [`random()`]; alternatively you can use
//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
//! the [`distributions`] and [`seq`] modules provide further
//! functionality on top of RNGs.
//!
//! ```
//! use rand::prelude::*;
//!
//! if rand::random() { // generates a boolean
//!     // Try printing a random unicode code point (probably a bad idea)!
//!     println!("char: {}", rand::random::<char>());
//! }
//!
//! let mut rng = rand::thread_rng();
//! let y: f64 = rng.gen(); // generates a float between 0 and 1
//!
//! let mut nums: Vec<i32> = (1..100).collect();
//! nums.shuffle(&mut rng);
//! ```
//!
//! # The Book
//!
//! For the user guide and futher documentation, please read
//! [The Rust Rand Book](https://rust-random.github.io/book).


#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
       html_favicon_url = "https://www.rust-lang.org/favicon.ico",
       html_root_url = "https://rust-random.github.io/rand/")]

#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]

#![cfg_attr(not(feature="std"), no_std)]
#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
#![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))]

#[cfg(feature = "std")] extern crate core;
#[cfg(all(feature = "alloc", not(feature="std")))] #[macro_use] extern crate alloc;

#[cfg(feature="simd_support")] extern crate packed_simd;

extern crate rand_jitter;
#[cfg(feature = "rand_os")]
extern crate rand_os;

extern crate rand_core;
extern crate rand_isaac;    // only for deprecations
extern crate rand_chacha;    // only for deprecations
extern crate rand_hc;
extern crate rand_pcg;
extern crate rand_xorshift;

#[cfg(feature = "log")] #[macro_use] extern crate log;
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! info { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! error { ($($x:tt)*) => () }


// Re-exports from rand_core
pub use rand_core::{RngCore, CryptoRng, SeedableRng};
pub use rand_core::{ErrorKind, Error};

// Public exports
#[cfg(feature="std")] pub use rngs::thread::thread_rng;

// Public modules
pub mod distributions;
pub mod prelude;
#[deprecated(since="0.6.0")]
pub mod prng;
pub mod rngs;
pub mod seq;

////////////////////////////////////////////////////////////////////////////////
// Compatibility re-exports. Documentation is hidden; will be removed eventually.

#[doc(hidden)] mod deprecated;

#[allow(deprecated)]
#[doc(hidden)] pub use deprecated::ReseedingRng;

#[allow(deprecated)]
#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::EntropyRng;

#[allow(deprecated)]
#[cfg(feature="rand_os")]
#[doc(hidden)]
pub use deprecated::OsRng;

#[allow(deprecated)]
#[doc(hidden)] pub use deprecated::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng};
#[allow(deprecated)]
#[doc(hidden)] pub use deprecated::StdRng;


#[allow(deprecated)]
#[doc(hidden)]
pub mod jitter {
    pub use deprecated::JitterRng;
    pub use rngs::TimerError;
}
#[allow(deprecated)]
#[cfg(feature="rand_os")]
#[doc(hidden)]
pub mod os {
    pub use deprecated::OsRng;
}
#[allow(deprecated)]
#[doc(hidden)]
pub mod chacha {
    pub use deprecated::ChaChaRng;
}
#[allow(deprecated)]
#[doc(hidden)]
pub mod isaac {
    pub use deprecated::{IsaacRng, Isaac64Rng};
}
#[allow(deprecated)]
#[cfg(feature="std")]
#[doc(hidden)]
pub mod read {
    pub use deprecated::ReadRng;
}

#[allow(deprecated)]
#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::ThreadRng;

////////////////////////////////////////////////////////////////////////////////


use core::{mem, slice};
use distributions::{Distribution, Standard};
use distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};

/// An automatically-implemented extension trait on [`RngCore`] providing high-level
/// generic methods for sampling values and other convenience methods.
///
/// This is the primary trait to use when generating random values.
///
/// # Generic usage
///
/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
/// things are worth noting here:
///
/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
///   difference whether we use `R: Rng` or `R: RngCore`.
/// - The `+ ?Sized` un-bounding allows functions to be called directly on
///   type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without
///   this it would be necessary to write `foo(&mut r)`.
///
/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
/// trade-offs. It allows the argument to be consumed directly without a `&mut`
/// (which is how `from_rng(thread_rng())` works); also it still works directly
/// on references (including type-erased references). Unfortunately within the
/// function `foo` it is not known whether `rng` is a reference type or not,
/// hence many uses of `rng` require an extra reference, either explicitly
/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
/// optimiser can remove redundant references later.
///
/// Example:
///
/// ```
/// # use rand::thread_rng;
/// use rand::Rng;
///
/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
///     rng.gen()
/// }
///
/// # let v = foo(&mut thread_rng());
/// ```
pub trait Rng: RngCore {
    /// Return a random value supporting the [`Standard`] distribution.
    ///
    /// [`Standard`]: distributions::Standard
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// let x: u32 = rng.gen();
    /// println!("{}", x);
    /// println!("{:?}", rng.gen::<(f64, bool)>());
    /// ```
    #[inline]
    fn gen<T>(&mut self) -> T where Standard: Distribution<T> {
        Standard.sample(self)
    }

    /// Generate a random value in the range [`low`, `high`), i.e. inclusive of
    /// `low` and exclusive of `high`.
    ///
    /// This function is optimised for the case that only a single sample is
    /// made from the given range. See also the [`Uniform`] distribution
    /// type which may be faster if sampling from the same range repeatedly.
    ///
    /// # Panics
    ///
    /// Panics if `low >= high`.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// let n: u32 = rng.gen_range(0, 10);
    /// println!("{}", n);
    /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
    /// println!("{}", m);
    /// ```
    ///
    /// [`Uniform`]: distributions::uniform::Uniform
    fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T
        where B1: SampleBorrow<T> + Sized,
              B2: SampleBorrow<T> + Sized {
        T::Sampler::sample_single(low, high, self)
    }

    /// Sample a new value, using the given distribution.
    ///
    /// ### Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    /// use rand::distributions::Uniform;
    ///
    /// let mut rng = thread_rng();
    /// let x = rng.sample(Uniform::new(10u32, 15));
    /// // Type annotation requires two types, the type and distribution; the
    /// // distribution can be inferred.
    /// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
    /// ```
    fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
        distr.sample(self)
    }

    /// Create an iterator that generates values using the given distribution.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    /// use rand::distributions::{Alphanumeric, Uniform, Standard};
    ///
    /// let mut rng = thread_rng();
    ///
    /// // Vec of 16 x f32:
    /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect();
    ///
    /// // String:
    /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect();
    ///
    /// // Combined values
    /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5)
    ///                              .collect::<Vec<(f64, bool)>>());
    ///
    /// // Dice-rolling:
    /// let die_range = Uniform::new_inclusive(1, 6);
    /// let mut roll_die = rng.sample_iter(&die_range);
    /// while roll_die.next().unwrap() != 6 {
    ///     println!("Not a 6; rolling again!");
    /// }
    /// ```
    fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D)
        -> distributions::DistIter<'a, D, Self, T> where Self: Sized
    {
        distr.sample_iter(self)
    }

    /// Fill `dest` entirely with random bytes (uniform value distribution),
    /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
    /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
    ///
    /// On big-endian platforms this performs byte-swapping to ensure
    /// portability of results from reproducible generators.
    ///
    /// This uses [`fill_bytes`] internally which may handle some RNG errors
    /// implicitly (e.g. waiting if the OS generator is not ready), but panics
    /// on other errors. See also [`try_fill`] which returns errors.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut arr = [0i8; 20];
    /// thread_rng().fill(&mut arr[..]);
    /// ```
    ///
    /// [`fill_bytes`]: RngCore::fill_bytes
    /// [`try_fill`]: Rng::try_fill
    fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
        self.fill_bytes(dest.as_byte_slice_mut());
        dest.to_le();
    }

    /// Fill `dest` entirely with random bytes (uniform value distribution),
    /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
    /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
    ///
    /// On big-endian platforms this performs byte-swapping to ensure
    /// portability of results from reproducible generators.
    ///
    /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In
    /// some cases errors may be resolvable; see [`ErrorKind`] and
    /// documentation for the RNG in use. If you do not plan to handle these
    /// errors you may prefer to use [`fill`].
    ///
    /// # Example
    ///
    /// ```
    /// # use rand::Error;
    /// use rand::{thread_rng, Rng};
    ///
    /// # fn try_inner() -> Result<(), Error> {
    /// let mut arr = [0u64; 4];
    /// thread_rng().try_fill(&mut arr[..])?;
    /// # Ok(())
    /// # }
    ///
    /// # try_inner().unwrap()
    /// ```
    ///
    /// [`try_fill_bytes`]: RngCore::try_fill_bytes
    /// [`fill`]: Rng::fill
    fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
        self.try_fill_bytes(dest.as_byte_slice_mut())?;
        dest.to_le();
        Ok(())
    }

    /// Return a bool with a probability `p` of being true.
    ///
    /// See also the [`Bernoulli`] distribution, which may be faster if
    /// sampling from the same probability repeatedly.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// println!("{}", rng.gen_bool(1.0 / 3.0));
    /// ```
    ///
    /// # Panics
    ///
    /// If `p < 0` or `p > 1`.
    ///
    /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
    #[inline]
    fn gen_bool(&mut self, p: f64) -> bool {
        let d = distributions::Bernoulli::new(p);
        self.sample(d)
    }

    /// Return a bool with a probability of `numerator/denominator` of being
    /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
    /// returning true. If `numerator == denominator`, then the returned value
    /// is guaranteed to be `true`. If `numerator == 0`, then the returned
    /// value is guaranteed to be `false`.
    ///
    /// See also the [`Bernoulli`] distribution, which may be faster if
    /// sampling from the same `numerator` and `denominator` repeatedly.
    ///
    /// # Panics
    ///
    /// If `denominator == 0` or `numerator > denominator`.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// println!("{}", rng.gen_ratio(2, 3));
    /// ```
    ///
    /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
    #[inline]
    fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
        let d = distributions::Bernoulli::from_ratio(numerator, denominator);
        self.sample(d)
    }

    /// Return a random element from `values`.
    ///
    /// Deprecated: use [`seq::SliceRandom::choose`] instead.
    #[deprecated(since="0.6.0", note="use SliceRandom::choose instead")]
    fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
        use seq::SliceRandom;
        values.choose(self)
    }

    /// Return a mutable pointer to a random element from `values`.
    ///
    /// Deprecated: use [`seq::SliceRandom::choose_mut`] instead.
    #[deprecated(since="0.6.0", note="use SliceRandom::choose_mut instead")]
    fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> {
        use seq::SliceRandom;
        values.choose_mut(self)
    }

    /// Shuffle a mutable slice in place.
    ///
    /// Deprecated: use [`seq::SliceRandom::shuffle`] instead.
    #[deprecated(since="0.6.0", note="use SliceRandom::shuffle instead")]
    fn shuffle<T>(&mut self, values: &mut [T]) {
        use seq::SliceRandom;
        values.shuffle(self)
    }
}

impl<R: RngCore + ?Sized> Rng for R {}

/// Trait for casting types to byte slices
///
/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods.
pub trait AsByteSliceMut {
    /// Return a mutable reference to self as a byte slice
    fn as_byte_slice_mut(&mut self) -> &mut [u8];

    /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms).
    fn to_le(&mut self);
}

impl AsByteSliceMut for [u8] {
    fn as_byte_slice_mut(&mut self) -> &mut [u8] {
        self
    }

    fn to_le(&mut self) {}
}

macro_rules! impl_as_byte_slice {
    ($t:ty) => {
        impl AsByteSliceMut for [$t] {
            fn as_byte_slice_mut(&mut self) -> &mut [u8] {
                if self.len() == 0 {
                    unsafe {
                        // must not use null pointer
                        slice::from_raw_parts_mut(0x1 as *mut u8, 0)
                    }
                } else {
                    unsafe {
                        slice::from_raw_parts_mut(&mut self[0]
                            as *mut $t
                            as *mut u8,
                            self.len() * mem::size_of::<$t>()
                        )
                    }
                }
            }

            fn to_le(&mut self) {
                for x in self {
                    *x = x.to_le();
                }
            }
        }
    }
}

impl_as_byte_slice!(u16);
impl_as_byte_slice!(u32);
impl_as_byte_slice!(u64);
#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(u128);
impl_as_byte_slice!(usize);
impl_as_byte_slice!(i8);
impl_as_byte_slice!(i16);
impl_as_byte_slice!(i32);
impl_as_byte_slice!(i64);
#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(i128);
impl_as_byte_slice!(isize);

macro_rules! impl_as_byte_slice_arrays {
    ($n:expr,) => {};
    ($n:expr, $N:ident, $($NN:ident,)*) => {
        impl_as_byte_slice_arrays!($n - 1, $($NN,)*);

        impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
            fn as_byte_slice_mut(&mut self) -> &mut [u8] {
                self[..].as_byte_slice_mut()
            }

            fn to_le(&mut self) {
                self[..].to_le()
            }
        }
    };
    (!div $n:expr,) => {};
    (!div $n:expr, $N:ident, $($NN:ident,)*) => {
        impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*);

        impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
            fn as_byte_slice_mut(&mut self) -> &mut [u8] {
                self[..].as_byte_slice_mut()
            }

            fn to_le(&mut self) {
                self[..].to_le()
            }
        }
    };
}
impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,);


/// A convenience extension to [`SeedableRng`] allowing construction from fresh
/// entropy. This trait is automatically implemented for any PRNG implementing
/// [`SeedableRng`] and is not intended to be implemented by users.
///
/// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then
/// unwrapping the result.
///
/// Since this is convenient and secure, it is the recommended way to create
/// PRNGs, though two alternatives may be considered:
///
/// *   Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed
/// *   Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`;
///     this will usually be faster and should also be secure, but requires
///     trusting one extra component.
///
/// ## Example
///
/// ```
/// use rand::{Rng, FromEntropy};
/// use rand::rngs::StdRng;
///
/// let mut rng = StdRng::from_entropy();
/// println!("Random die roll: {}", rng.gen_range(1, 7));
/// ```
///
/// [`EntropyRng`]: rngs::EntropyRng
#[cfg(feature="std")]
pub trait FromEntropy: SeedableRng {
    /// Creates a new instance, automatically seeded with fresh entropy.
    ///
    /// Normally this will use `OsRng`, but if that fails `JitterRng` will be
    /// used instead. Both should be suitable for cryptography. It is possible
    /// that both entropy sources will fail though unlikely; failures would
    /// almost certainly be platform limitations or build issues, i.e. most
    /// applications targetting PC/mobile platforms should not need to worry
    /// about this failing.
    ///
    /// # Panics
    ///
    /// If all entropy sources fail this will panic. If you need to handle
    /// errors, use the following code, equivalent aside from error handling:
    ///
    /// ```
    /// # use rand::Error;
    /// use rand::prelude::*;
    /// use rand::rngs::EntropyRng;
    ///
    /// # fn try_inner() -> Result<(), Error> {
    /// // This uses StdRng, but is valid for any R: SeedableRng
    /// let mut rng = StdRng::from_rng(EntropyRng::new())?;
    ///
    /// println!("random number: {}", rng.gen_range(1, 10));
    /// # Ok(())
    /// # }
    ///
    /// # try_inner().unwrap()
    /// ```
    fn from_entropy() -> Self;
}

#[cfg(feature="std")]
impl<R: SeedableRng> FromEntropy for R {
    fn from_entropy() -> R {
        R::from_rng(rngs::EntropyRng::new()).unwrap_or_else(|err|
            panic!("FromEntropy::from_entropy() failed: {}", err))
    }
}


/// Generates a random value using the thread-local random number generator.
///
/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
/// documentation of the entropy source and [`Standard`] for documentation of
/// distributions and type-specific generation.
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
///     println!("Better lucky than good!");
/// }
/// ```
///
/// If you're calling `random()` in a loop, caching the generator as in the
/// following example can increase performance.
///
/// ```
/// use rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
///     *x = rand::random()
/// }
///
/// // can be made faster by caching thread_rng
///
/// let mut rng = rand::thread_rng();
///
/// for x in v.iter_mut() {
///     *x = rng.gen();
/// }
/// ```
///
/// [`Standard`]: distributions::Standard
#[cfg(feature="std")]
#[inline]
pub fn random<T>() -> T where Standard: Distribution<T> {
    thread_rng().gen()
}

#[cfg(test)]
mod test {
    use rngs::mock::StepRng;
    use rngs::StdRng;
    use super::*;
    #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box;

    pub struct TestRng<R> { inner: R }

    impl<R: RngCore> RngCore for TestRng<R> {
        fn next_u32(&mut self) -> u32 {
            self.inner.next_u32()
        }
        fn next_u64(&mut self) -> u64 {
            self.inner.next_u64()
        }
        fn fill_bytes(&mut self, dest: &mut [u8]) {
            self.inner.fill_bytes(dest)
        }
        fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            self.inner.try_fill_bytes(dest)
        }
    }

    pub fn rng(seed: u64) -> TestRng<StdRng> {
        TestRng { inner: StdRng::seed_from_u64(seed) }
    }

    #[test]
    fn test_fill_bytes_default() {
        let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);

        // check every remainder mod 8, both in small and big vectors.
        let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
                       80, 81, 82, 83, 84, 85, 86, 87];
        for &n in lengths.iter() {
            let mut buffer = [0u8; 87];
            let v = &mut buffer[0..n];
            r.fill_bytes(v);

            // use this to get nicer error messages.
            for (i, &byte) in v.iter().enumerate() {
                if byte == 0 {
                    panic!("byte {} of {} is zero", i, n)
                }
            }
        }
    }

    #[test]
    fn test_fill() {
        let x = 9041086907909331047;    // a random u64
        let mut rng = StepRng::new(x, 0);

        // Convert to byte sequence and back to u64; byte-swap twice if BE.
        let mut array = [0u64; 2];
        rng.fill(&mut array[..]);
        assert_eq!(array, [x, x]);
        assert_eq!(rng.next_u64(), x);

        // Convert to bytes then u32 in LE order
        let mut array = [0u32; 2];
        rng.fill(&mut array[..]);
        assert_eq!(array, [x as u32, (x >> 32) as u32]);
        assert_eq!(rng.next_u32(), x as u32);
    }

    #[test]
    fn test_fill_empty() {
        let mut array = [0u32; 0];
        let mut rng = StepRng::new(0, 1);
        rng.fill(&mut array);
        rng.fill(&mut array[..]);
    }

    #[test]
    fn test_gen_range() {
        let mut r = rng(101);
        for _ in 0..1000 {
            let a = r.gen_range(-4711, 17);
            assert!(a >= -4711 && a < 17);
            let a = r.gen_range(-3i8, 42);
            assert!(a >= -3i8 && a < 42i8);
            let a = r.gen_range(&10u16, 99);
            assert!(a >= 10u16 && a < 99u16);
            let a = r.gen_range(-100i32, &2000);
            assert!(a >= -100i32 && a < 2000i32);
            let a = r.gen_range(&12u32, &24u32);
            assert!(a >= 12u32 && a < 24u32);

            assert_eq!(r.gen_range(0u32, 1), 0u32);
            assert_eq!(r.gen_range(-12i64, -11), -12i64);
            assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
        }
    }

    #[test]
    #[should_panic]
    fn test_gen_range_panic_int() {
        let mut r = rng(102);
        r.gen_range(5, -2);
    }

    #[test]
    #[should_panic]
    fn test_gen_range_panic_usize() {
        let mut r = rng(103);
        r.gen_range(5, 2);
    }

    #[test]
    fn test_gen_bool() {
        let mut r = rng(105);
        for _ in 0..5 {
            assert_eq!(r.gen_bool(0.0), false);
            assert_eq!(r.gen_bool(1.0), true);
        }
    }

    #[test]
    fn test_rng_trait_object() {
        use distributions::{Distribution, Standard};
        let mut rng = rng(109);
        let mut r = &mut rng as &mut RngCore;
        r.next_u32();
        r.gen::<i32>();
        assert_eq!(r.gen_range(0, 1), 0);
        let _c: u8 = Standard.sample(&mut r);
    }

    #[test]
    #[cfg(feature="alloc")]
    fn test_rng_boxed_trait() {
        use distributions::{Distribution, Standard};
        let rng = rng(110);
        let mut r = Box::new(rng) as Box<RngCore>;
        r.next_u32();
        r.gen::<i32>();
        assert_eq!(r.gen_range(0, 1), 0);
        let _c: u8 = Standard.sample(&mut r);
    }

    #[test]
    #[cfg(feature="std")]
    fn test_random() {
        // not sure how to test this aside from just getting some values
        let _n : usize = random();
        let _f : f32 = random();
        let _o : Option<Option<i8>> = random();
        let _many : ((),
                     (usize,
                      isize,
                      Option<(u32, (bool,))>),
                     (u8, i8, u16, i16, u32, i32, u64, i64),
                     (f32, (f64, (f64,)))) = random();
    }

    #[test]
    fn test_gen_ratio_average() {
        const NUM: u32 = 3;
        const DENOM: u32 = 10;
        const N: u32 = 100_000;

        let mut sum: u32 = 0;
        let mut rng = rng(111);
        for _ in 0..N {
            if rng.gen_ratio(NUM, DENOM) {
                sum += 1;
            }
        }
        // Have Binomial(N, NUM/DENOM) distribution
        let expected = (NUM * N) / DENOM;   // exact integer
        assert!(((sum - expected) as i32).abs() < 500);
    }
}