logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The HC-128 random number generator.

use core::fmt;
use rand_core::{CryptoRng, RngCore, SeedableRng, Error, le};
use rand_core::block::{BlockRngCore, BlockRng};

const SEED_WORDS: usize = 8; // 128 bit key followed by 128 bit iv

/// A cryptographically secure random number generator that uses the HC-128
/// algorithm.
///
/// HC-128 is a stream cipher designed by Hongjun Wu[^1], that we use as an
/// RNG. It is selected as one of the "stream ciphers suitable for widespread
/// adoption" by eSTREAM[^2].
///
/// HC-128 is an array based RNG. In this it is similar to RC-4 and ISAAC before
/// it, but those have never been proven cryptographically secure (or have even
/// been significantly compromised, as in the case of RC-4[^5]).
///
/// Because HC-128 works with simple indexing into a large array and with a few
/// operations that parallelize well, it has very good performance. The size of
/// the array it needs, 4kb, can however be a disadvantage.
///
/// This implementation is not based on the version of HC-128 submitted to the
/// eSTREAM contest, but on a later version by the author with a few small
/// improvements from December 15, 2009[^3].
///
/// HC-128 has no known weaknesses that are easier to exploit than doing a
/// brute-force search of 2<sup>128</sup>. A very comprehensive analysis of the
/// current state of known attacks / weaknesses of HC-128 is given in *Some
/// Results On Analysis And Implementation Of HC-128 Stream Cipher*[^4].
///
/// The average cycle length is expected to be
/// 2<sup>1024*32+10-1</sup> = 2<sup>32777</sup>.
/// We support seeding with a 256-bit array, which matches the 128-bit key
/// concatenated with a 128-bit IV from the stream cipher.
///
/// This implementation uses an output buffer of sixteen `u32` words, and uses
/// [`BlockRng`] to implement the [`RngCore`] methods.
///
/// ## References
/// [^1]: Hongjun Wu (2008). ["The Stream Cipher HC-128"](
///       http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf).
///       *The eSTREAM Finalists*, LNCS 4986, pp. 39–47, Springer-Verlag.
///
/// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project](
///       http://www.ecrypt.eu.org/stream/)
///
/// [^3]: Hongjun Wu, [Stream Ciphers HC-128 and HC-256](
///       https://www.ntu.edu.sg/home/wuhj/research/hc/index.html)
///
/// [^4]: Shashwat Raizada (January 2015),["Some Results On Analysis And
///       Implementation Of HC-128 Stream Cipher"](
///       http://library.isical.ac.in:8080/jspui/bitstream/123456789/6636/1/TH431.pdf).
///
/// [^5]: Internet Engineering Task Force (February 2015),
///       ["Prohibiting RC4 Cipher Suites"](https://tools.ietf.org/html/rfc7465).
///
/// [`BlockRng`]: ../rand_core/block/struct.BlockRng.html
/// [`RngCore`]: ../rand_core/trait.RngCore.html
#[derive(Clone, Debug)]
pub struct Hc128Rng(BlockRng<Hc128Core>);

impl RngCore for Hc128Rng {
    #[inline(always)]
    fn next_u32(&mut self) -> u32 {
        self.0.next_u32()
    }

    #[inline(always)]
    fn next_u64(&mut self) -> u64 {
        self.0.next_u64()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        self.0.fill_bytes(dest)
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        self.0.try_fill_bytes(dest)
    }
}

impl SeedableRng for Hc128Rng {
    type Seed = <Hc128Core as SeedableRng>::Seed;

    fn from_seed(seed: Self::Seed) -> Self {
        Hc128Rng(BlockRng::<Hc128Core>::from_seed(seed))
    }

    fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
        BlockRng::<Hc128Core>::from_rng(rng).map(Hc128Rng)
    }
}

impl CryptoRng for Hc128Rng {}

/// The core of `Hc128Rng`, used with `BlockRng`.
#[derive(Clone)]
pub struct Hc128Core {
    t: [u32; 1024],
    counter1024: usize,
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Hc128Core {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Hc128Core {{}}")
    }
}

impl BlockRngCore for Hc128Core {
    type Item = u32;
    type Results = [u32; 16];

    fn generate(&mut self, results: &mut Self::Results) {
        assert!(self.counter1024 % 16 == 0);

        let cc = self.counter1024 % 512;
        let dd = (cc + 16) % 512;
        let ee = cc.wrapping_sub(16) % 512;

        if self.counter1024 & 512 == 0 {
            // P block
            results[0]  = self.step_p(cc+0,  cc+1,  ee+13, ee+6,  ee+4);
            results[1]  = self.step_p(cc+1,  cc+2,  ee+14, ee+7,  ee+5);
            results[2]  = self.step_p(cc+2,  cc+3,  ee+15, ee+8,  ee+6);
            results[3]  = self.step_p(cc+3,  cc+4,  cc+0,  ee+9,  ee+7);
            results[4]  = self.step_p(cc+4,  cc+5,  cc+1,  ee+10, ee+8);
            results[5]  = self.step_p(cc+5,  cc+6,  cc+2,  ee+11, ee+9);
            results[6]  = self.step_p(cc+6,  cc+7,  cc+3,  ee+12, ee+10);
            results[7]  = self.step_p(cc+7,  cc+8,  cc+4,  ee+13, ee+11);
            results[8]  = self.step_p(cc+8,  cc+9,  cc+5,  ee+14, ee+12);
            results[9]  = self.step_p(cc+9,  cc+10, cc+6,  ee+15, ee+13);
            results[10] = self.step_p(cc+10, cc+11, cc+7,  cc+0,  ee+14);
            results[11] = self.step_p(cc+11, cc+12, cc+8,  cc+1,  ee+15);
            results[12] = self.step_p(cc+12, cc+13, cc+9,  cc+2,  cc+0);
            results[13] = self.step_p(cc+13, cc+14, cc+10, cc+3,  cc+1);
            results[14] = self.step_p(cc+14, cc+15, cc+11, cc+4,  cc+2);
            results[15] = self.step_p(cc+15, dd+0,  cc+12, cc+5,  cc+3);
        } else {
            // Q block
            results[0]  = self.step_q(cc+0,  cc+1,  ee+13, ee+6,  ee+4);
            results[1]  = self.step_q(cc+1,  cc+2,  ee+14, ee+7,  ee+5);
            results[2]  = self.step_q(cc+2,  cc+3,  ee+15, ee+8,  ee+6);
            results[3]  = self.step_q(cc+3,  cc+4,  cc+0,  ee+9,  ee+7);
            results[4]  = self.step_q(cc+4,  cc+5,  cc+1,  ee+10, ee+8);
            results[5]  = self.step_q(cc+5,  cc+6,  cc+2,  ee+11, ee+9);
            results[6]  = self.step_q(cc+6,  cc+7,  cc+3,  ee+12, ee+10);
            results[7]  = self.step_q(cc+7,  cc+8,  cc+4,  ee+13, ee+11);
            results[8]  = self.step_q(cc+8,  cc+9,  cc+5,  ee+14, ee+12);
            results[9]  = self.step_q(cc+9,  cc+10, cc+6,  ee+15, ee+13);
            results[10] = self.step_q(cc+10, cc+11, cc+7,  cc+0,  ee+14);
            results[11] = self.step_q(cc+11, cc+12, cc+8,  cc+1,  ee+15);
            results[12] = self.step_q(cc+12, cc+13, cc+9,  cc+2,  cc+0);
            results[13] = self.step_q(cc+13, cc+14, cc+10, cc+3,  cc+1);
            results[14] = self.step_q(cc+14, cc+15, cc+11, cc+4,  cc+2);
            results[15] = self.step_q(cc+15, dd+0,  cc+12, cc+5,  cc+3);
        }
        self.counter1024 = self.counter1024.wrapping_add(16);
    }
}

impl Hc128Core {
    // One step of HC-128, update P and generate 32 bits keystream
    #[inline(always)]
    fn step_p(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize)
         -> u32
    {
        let (p, q) = self.t.split_at_mut(512);
        // FIXME: it would be great if we the bounds checks here could be
        // optimized out, and we would not need unsafe.
        // This improves performance by about 7%.
        unsafe {
            let temp0 = p.get_unchecked(i511).rotate_right(23);
            let temp1 = p.get_unchecked(i3).rotate_right(10);
            let temp2 = p.get_unchecked(i10).rotate_right(8);
            *p.get_unchecked_mut(i) = p.get_unchecked(i)
                                       .wrapping_add(temp2)
                                       .wrapping_add(temp0 ^ temp1);
            let temp3 = {
                // The h1 function in HC-128
                let a = *p.get_unchecked(i12) as u8;
                let c = (p.get_unchecked(i12) >> 16) as u8;
                q[a as usize].wrapping_add(q[256 + c as usize])
            };
            temp3 ^ p.get_unchecked(i)
        }
    }

    // One step of HC-128, update Q and generate 32 bits keystream
    // Similar to `step_p`, but `p` and `q` are swapped, and the rotates are to
    // the left instead of to the right.
    #[inline(always)]
    fn step_q(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize)
         -> u32
    {
        let (p, q) = self.t.split_at_mut(512);
        unsafe {
            let temp0 = q.get_unchecked(i511).rotate_left(23);
            let temp1 = q.get_unchecked(i3).rotate_left(10);
            let temp2 = q.get_unchecked(i10).rotate_left(8);
            *q.get_unchecked_mut(i) = q.get_unchecked(i)
                                       .wrapping_add(temp2)
                                       .wrapping_add(temp0 ^ temp1);
            let temp3 = {
                // The h2 function in HC-128
                let a = *q.get_unchecked(i12) as u8;
                let c = (q.get_unchecked(i12) >> 16) as u8;
                p[a as usize].wrapping_add(p[256 + c as usize])
            };
            temp3 ^ q.get_unchecked(i)
        }
    }

    fn sixteen_steps(&mut self) {
        assert!(self.counter1024 % 16 == 0);

        let cc = self.counter1024 % 512;
        let dd = (cc + 16) % 512;
        let ee = cc.wrapping_sub(16) % 512;

        if self.counter1024 < 512 {
            // P block
            self.t[cc+0]  = self.step_p(cc+0,  cc+1,  ee+13, ee+6,  ee+4);
            self.t[cc+1]  = self.step_p(cc+1,  cc+2,  ee+14, ee+7,  ee+5);
            self.t[cc+2]  = self.step_p(cc+2,  cc+3,  ee+15, ee+8,  ee+6);
            self.t[cc+3]  = self.step_p(cc+3,  cc+4,  cc+0,  ee+9,  ee+7);
            self.t[cc+4]  = self.step_p(cc+4,  cc+5,  cc+1,  ee+10, ee+8);
            self.t[cc+5]  = self.step_p(cc+5,  cc+6,  cc+2,  ee+11, ee+9);
            self.t[cc+6]  = self.step_p(cc+6,  cc+7,  cc+3,  ee+12, ee+10);
            self.t[cc+7]  = self.step_p(cc+7,  cc+8,  cc+4,  ee+13, ee+11);
            self.t[cc+8]  = self.step_p(cc+8,  cc+9,  cc+5,  ee+14, ee+12);
            self.t[cc+9]  = self.step_p(cc+9,  cc+10, cc+6,  ee+15, ee+13);
            self.t[cc+10] = self.step_p(cc+10, cc+11, cc+7,  cc+0,  ee+14);
            self.t[cc+11] = self.step_p(cc+11, cc+12, cc+8,  cc+1,  ee+15);
            self.t[cc+12] = self.step_p(cc+12, cc+13, cc+9,  cc+2,  cc+0);
            self.t[cc+13] = self.step_p(cc+13, cc+14, cc+10, cc+3,  cc+1);
            self.t[cc+14] = self.step_p(cc+14, cc+15, cc+11, cc+4,  cc+2);
            self.t[cc+15] = self.step_p(cc+15, dd+0,  cc+12, cc+5,  cc+3);
        } else {
            // Q block
            self.t[cc+512+0]  = self.step_q(cc+0,  cc+1,  ee+13, ee+6,  ee+4);
            self.t[cc+512+1]  = self.step_q(cc+1,  cc+2,  ee+14, ee+7,  ee+5);
            self.t[cc+512+2]  = self.step_q(cc+2,  cc+3,  ee+15, ee+8,  ee+6);
            self.t[cc+512+3]  = self.step_q(cc+3,  cc+4,  cc+0,  ee+9,  ee+7);
            self.t[cc+512+4]  = self.step_q(cc+4,  cc+5,  cc+1,  ee+10, ee+8);
            self.t[cc+512+5]  = self.step_q(cc+5,  cc+6,  cc+2,  ee+11, ee+9);
            self.t[cc+512+6]  = self.step_q(cc+6,  cc+7,  cc+3,  ee+12, ee+10);
            self.t[cc+512+7]  = self.step_q(cc+7,  cc+8,  cc+4,  ee+13, ee+11);
            self.t[cc+512+8]  = self.step_q(cc+8,  cc+9,  cc+5,  ee+14, ee+12);
            self.t[cc+512+9]  = self.step_q(cc+9,  cc+10, cc+6,  ee+15, ee+13);
            self.t[cc+512+10] = self.step_q(cc+10, cc+11, cc+7,  cc+0,  ee+14);
            self.t[cc+512+11] = self.step_q(cc+11, cc+12, cc+8,  cc+1,  ee+15);
            self.t[cc+512+12] = self.step_q(cc+12, cc+13, cc+9,  cc+2,  cc+0);
            self.t[cc+512+13] = self.step_q(cc+13, cc+14, cc+10, cc+3,  cc+1);
            self.t[cc+512+14] = self.step_q(cc+14, cc+15, cc+11, cc+4,  cc+2);
            self.t[cc+512+15] = self.step_q(cc+15, dd+0,  cc+12, cc+5,  cc+3);
        }
        self.counter1024 += 16;
    }

    // Initialize an HC-128 random number generator. The seed has to be
    // 256 bits in length (`[u32; 8]`), matching the 128 bit `key` followed by
    // 128 bit `iv` when HC-128 where to be used as a stream cipher.
    fn init(seed: [u32; SEED_WORDS]) -> Self {
        #[inline]
        fn f1(x: u32) -> u32 {
            x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3)
        }

        #[inline]
        fn f2(x: u32) -> u32 {
            x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10)
        }

        let mut t = [0u32; 1024];

        // Expand the key and iv into P and Q
        let (key, iv) = seed.split_at(4);
        t[..4].copy_from_slice(key);
        t[4..8].copy_from_slice(key);
        t[8..12].copy_from_slice(iv);
        t[12..16].copy_from_slice(iv);

        // Generate the 256 intermediate values W[16] ... W[256+16-1], and
        // copy the last 16 generated values to the start op P.
        for i in 16..256+16 {
            t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15]))
                   .wrapping_add(t[i-16]).wrapping_add(i as u32);
        }
        {
            let (p1, p2) = t.split_at_mut(256);
            p1[0..16].copy_from_slice(&p2[0..16]);
        }

        // Generate both the P and Q tables
        for i in 16..1024 {
            t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15]))
                   .wrapping_add(t[i-16]).wrapping_add(256 + i as u32);
        }

        let mut core = Self { t, counter1024: 0 };

        // run the cipher 1024 steps
        for _ in 0..64 { core.sixteen_steps() };
        core.counter1024 = 0;
        core
    }
}

impl SeedableRng for Hc128Core {
    type Seed = [u8; SEED_WORDS*4];

    /// Create an HC-128 random number generator with a seed. The seed has to be
    /// 256 bits in length, matching the 128 bit `key` followed by 128 bit `iv`
    /// when HC-128 where to be used as a stream cipher.
    fn from_seed(seed: Self::Seed) -> Self {
        let mut seed_u32 = [0u32; SEED_WORDS];
        le::read_u32_into(&seed, &mut seed_u32);
        Self::init(seed_u32)
    }
}

impl CryptoRng for Hc128Core {}

#[cfg(test)]
mod test {
    use ::rand_core::{RngCore, SeedableRng};
    use super::Hc128Rng;

    #[test]
    // Test vector 1 from the paper "The Stream Cipher HC-128"
    fn test_hc128_true_values_a() {
        let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv
        let mut rng = Hc128Rng::from_seed(seed);

        let mut results = [0u32; 16];
        for i in results.iter_mut() { *i = rng.next_u32(); }
        let expected = [0x73150082, 0x3bfd03a0, 0xfb2fd77f, 0xaa63af0e,
                        0xde122fc6, 0xa7dc29b6, 0x62a68527, 0x8b75ec68,
                        0x9036db1e, 0x81896005, 0x00ade078, 0x491fbf9a,
                        0x1cdc3013, 0x6c3d6e24, 0x90f664b2, 0x9cd57102];
        assert_eq!(results, expected);
    }

    #[test]
    // Test vector 2 from the paper "The Stream Cipher HC-128"
    fn test_hc128_true_values_b() {
        let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key
                    1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv
        let mut rng = Hc128Rng::from_seed(seed);

        let mut results = [0u32; 16];
        for i in results.iter_mut() { *i = rng.next_u32(); }
        let expected = [0xc01893d5, 0xb7dbe958, 0x8f65ec98, 0x64176604,
                        0x36fc6724, 0xc82c6eec, 0x1b1c38a7, 0xc9b42a95,
                        0x323ef123, 0x0a6a908b, 0xce757b68, 0x9f14f7bb,
                        0xe4cde011, 0xaeb5173f, 0x89608c94, 0xb5cf46ca];
        assert_eq!(results, expected);
    }

    #[test]
    // Test vector 3 from the paper "The Stream Cipher HC-128"
    fn test_hc128_true_values_c() {
        let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv
        let mut rng = Hc128Rng::from_seed(seed);

        let mut results = [0u32; 16];
        for i in results.iter_mut() { *i = rng.next_u32(); }
        let expected = [0x518251a4, 0x04b4930a, 0xb02af931, 0x0639f032,
                        0xbcb4a47a, 0x5722480b, 0x2bf99f72, 0xcdc0e566,
                        0x310f0c56, 0xd3cc83e8, 0x663db8ef, 0x62dfe07f,
                        0x593e1790, 0xc5ceaa9c, 0xab03806f, 0xc9a6e5a0];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_hc128_true_values_u64() {
        let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv
        let mut rng = Hc128Rng::from_seed(seed);

        let mut results = [0u64; 8];
        for i in results.iter_mut() { *i = rng.next_u64(); }
        let expected = [0x3bfd03a073150082, 0xaa63af0efb2fd77f,
                        0xa7dc29b6de122fc6, 0x8b75ec6862a68527,
                        0x818960059036db1e, 0x491fbf9a00ade078,
                        0x6c3d6e241cdc3013, 0x9cd5710290f664b2];
        assert_eq!(results, expected);

        // The RNG operates in a P block of 512 results and next a Q block.
        // After skipping 2*800 u32 results we end up somewhere in the Q block
        // of the second round
        for _ in 0..800 { rng.next_u64(); }

        for i in results.iter_mut() { *i = rng.next_u64(); }
        let expected = [0xd8c4d6ca84d0fc10, 0xf16a5d91dc66e8e7,
                        0xd800de5bc37a8653, 0x7bae1f88c0dfbb4c,
                        0x3bfe1f374e6d4d14, 0x424b55676be3fa06,
                        0xe3a1e8758cbff579, 0x417f7198c5652bcd];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_hc128_true_values_bytes() {
        let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv
        let mut rng = Hc128Rng::from_seed(seed);
        let expected = [0x31, 0xf9, 0x2a, 0xb0, 0x32, 0xf0, 0x39, 0x06,
                 0x7a, 0xa4, 0xb4, 0xbc, 0x0b, 0x48, 0x22, 0x57,
                 0x72, 0x9f, 0xf9, 0x2b, 0x66, 0xe5, 0xc0, 0xcd,
                 0x56, 0x0c, 0x0f, 0x31, 0xe8, 0x83, 0xcc, 0xd3,
                 0xef, 0xb8, 0x3d, 0x66, 0x7f, 0xe0, 0xdf, 0x62,
                 0x90, 0x17, 0x3e, 0x59, 0x9c, 0xaa, 0xce, 0xc5,
                 0x6f, 0x80, 0x03, 0xab, 0xa0, 0xe5, 0xa6, 0xc9,
                 0x60, 0x95, 0x84, 0x7a, 0xa5, 0x68, 0x5a, 0x84,
                 0xea, 0xd5, 0xf3, 0xea, 0x73, 0xa9, 0xad, 0x01,
                 0x79, 0x7d, 0xbe, 0x9f, 0xea, 0xe3, 0xf9, 0x74,
                 0x0e, 0xda, 0x2f, 0xa0, 0xe4, 0x7b, 0x4b, 0x1b,
                 0xdd, 0x17, 0x69, 0x4a, 0xfe, 0x9f, 0x56, 0x95,
                 0xad, 0x83, 0x6b, 0x9d, 0x60, 0xa1, 0x99, 0x96,
                 0x90, 0x00, 0x66, 0x7f, 0xfa, 0x7e, 0x65, 0xe9,
                 0xac, 0x8b, 0x92, 0x34, 0x77, 0xb4, 0x23, 0xd0,
                 0xb9, 0xab, 0xb1, 0x47, 0x7d, 0x4a, 0x13, 0x0a];

        // Pick a somewhat large buffer so we can test filling with the
        // remainder from `state.results`, directly filling the buffer, and
        // filling the remainder of the buffer.
        let mut buffer = [0u8; 16*4*2];
        // Consume a value so that we have a remainder.
        assert!(rng.next_u64() == 0x04b4930a518251a4);
        rng.fill_bytes(&mut buffer);

        // [u8; 128] doesn't implement PartialEq
        assert_eq!(buffer.len(), expected.len());
        for (b, e) in buffer.iter().zip(expected.iter()) {
            assert_eq!(b, e);
        }
    }

    #[test]
    fn test_hc128_clone() {
        let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv
        let mut rng1 = Hc128Rng::from_seed(seed);
        let mut rng2 = rng1.clone();
        for _ in 0..16 {
            assert_eq!(rng1.next_u32(), rng2.next_u32());
        }
    }
}