1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
use super::{Inner, Runtime};
use reactor::Reactor;
use std::io;
use std::sync::Mutex;
use std::time::Duration;
use std::any::Any;
use num_cpus;
use tokio_reactor;
use tokio_threadpool::Builder as ThreadPoolBuilder;
use tokio_timer::clock::{self, Clock};
use tokio_timer::timer::{self, Timer};
#[cfg(feature = "experimental-tracing")]
use tracing_core as trace;
/// Builds Tokio Runtime with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The
/// Runtime is constructed by calling [`build`].
///
/// New instances of `Builder` are obtained via [`Builder::new`].
///
/// See function level documentation for details on the various configuration
/// settings.
///
/// [`build`]: #method.build
/// [`Builder::new`]: #method.new
///
/// # Examples
///
/// ```
/// extern crate tokio;
/// extern crate tokio_timer;
///
/// use std::time::Duration;
///
/// use tokio::runtime::Builder;
/// use tokio_timer::clock::Clock;
///
/// fn main() {
/// // build Runtime
/// let mut runtime = Builder::new()
/// .blocking_threads(4)
/// .clock(Clock::system())
/// .core_threads(4)
/// .keep_alive(Some(Duration::from_secs(60)))
/// .name_prefix("my-custom-name-")
/// .stack_size(3 * 1024 * 1024)
/// .build()
/// .unwrap();
///
/// // use runtime ...
/// }
/// ```
#[derive(Debug)]
pub struct Builder {
/// Thread pool specific builder
threadpool_builder: ThreadPoolBuilder,
/// The number of worker threads
core_threads: usize,
/// The clock to use
clock: Clock,
}
impl Builder {
/// Returns a new runtime builder initialized with default configuration
/// values.
///
/// Configuration methods can be chained on the return value.
pub fn new() -> Builder {
let core_threads = num_cpus::get().max(1);
let mut threadpool_builder = ThreadPoolBuilder::new();
threadpool_builder.name_prefix("tokio-runtime-worker-");
threadpool_builder.pool_size(core_threads);
Builder {
threadpool_builder,
core_threads,
clock: Clock::new(),
}
}
/// Set the `Clock` instance that will be used by the runtime.
pub fn clock(&mut self, clock: Clock) -> &mut Self {
self.clock = clock;
self
}
/// Set builder to set up the thread pool instance.
#[deprecated(
since = "0.1.9",
note = "use the `core_threads`, `blocking_threads`, `name_prefix`, \
`keep_alive`, and `stack_size` functions on `runtime::Builder`, \
instead")]
#[doc(hidden)]
pub fn threadpool_builder(&mut self, val: ThreadPoolBuilder) -> &mut Self {
self.threadpool_builder = val;
self
}
/// Sets a callback to handle panics in futures.
///
/// The callback is triggered when a panic during a future bubbles up to
/// Tokio. By default Tokio catches these panics, and they will be ignored.
/// The parameter passed to this callback is the same error value returned
/// from `std::panic::catch_unwind()`. To abort the process on panics, use
/// `std::panic::resume_unwind()` in this callback as shown below.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .panic_handler(|err| std::panic::resume_unwind(err))
/// .build()
/// .unwrap();
/// # }
/// ```
pub fn panic_handler<F>(&mut self, f: F) -> &mut Self
where
F: Fn(Box<Any + Send>) + Send + Sync + 'static,
{
self.threadpool_builder.panic_handler(f);
self
}
/// Set the maximum number of worker threads for the `Runtime`'s thread pool.
///
/// This must be a number between 1 and 32,768 though it is advised to keep
/// this value on the smaller side.
///
/// The default value is the number of cores available to the system.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .core_threads(4)
/// .build()
/// .unwrap();
/// # }
/// ```
pub fn core_threads(&mut self, val: usize) -> &mut Self {
self.core_threads = val;
self.threadpool_builder.pool_size(val);
self
}
/// Set the maximum number of concurrent blocking sections in the `Runtime`'s
/// thread pool.
///
/// When the maximum concurrent `blocking` calls is reached, any further
/// calls to `blocking` will return `NotReady` and the task is notified once
/// previously in-flight calls to `blocking` return.
///
/// This must be a number between 1 and 32,768 though it is advised to keep
/// this value on the smaller side.
///
/// The default value is 100.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .blocking_threads(200)
/// .build();
/// # }
/// ```
pub fn blocking_threads(&mut self, val: usize) -> &mut Self {
self.threadpool_builder.max_blocking(val);
self
}
/// Set the worker thread keep alive duration for threads in the `Runtime`'s
/// thread pool.
///
/// If set, a worker thread will wait for up to the specified duration for
/// work, at which point the thread will shutdown. When work becomes
/// available, a new thread will eventually be spawned to replace the one
/// that shut down.
///
/// When the value is `None`, the thread will wait for work forever.
///
/// The default value is `None`.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
/// use std::time::Duration;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .keep_alive(Some(Duration::from_secs(30)))
/// .build();
/// # }
/// ```
pub fn keep_alive(&mut self, val: Option<Duration>) -> &mut Self {
self.threadpool_builder.keep_alive(val);
self
}
/// Set name prefix of threads spawned by the `Runtime`'s thread pool.
///
/// Thread name prefix is used for generating thread names. For example, if
/// prefix is `my-pool-`, then threads in the pool will get names like
/// `my-pool-1` etc.
///
/// The default prefix is "tokio-runtime-worker-".
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .name_prefix("my-pool-")
/// .build();
/// # }
/// ```
pub fn name_prefix<S: Into<String>>(&mut self, val: S) -> &mut Self {
self.threadpool_builder.name_prefix(val);
self
}
/// Set the stack size (in bytes) for worker threads.
///
/// The actual stack size may be greater than this value if the platform
/// specifies minimal stack size.
///
/// The default stack size for spawned threads is 2 MiB, though this
/// particular stack size is subject to change in the future.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .stack_size(32 * 1024)
/// .build();
/// # }
/// ```
pub fn stack_size(&mut self, val: usize) -> &mut Self {
self.threadpool_builder.stack_size(val);
self
}
/// Execute function `f` after each thread is started but before it starts
/// doing work.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let thread_pool = runtime::Builder::new()
/// .after_start(|| {
/// println!("thread started");
/// })
/// .build();
/// # }
/// ```
pub fn after_start<F>(&mut self, f: F) -> &mut Self
where F: Fn() + Send + Sync + 'static
{
self.threadpool_builder.after_start(f);
self
}
/// Execute function `f` before each thread stops.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let thread_pool = runtime::Builder::new()
/// .before_stop(|| {
/// println!("thread stopping");
/// })
/// .build();
/// # }
/// ```
pub fn before_stop<F>(&mut self, f: F) -> &mut Self
where F: Fn() + Send + Sync + 'static
{
self.threadpool_builder.before_stop(f);
self
}
/// Create the configured `Runtime`.
///
/// The returned `ThreadPool` instance is ready to spawn tasks.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # use tokio::runtime::Builder;
/// # pub fn main() {
/// let runtime = Builder::new().build().unwrap();
/// // ... call runtime.run(...)
/// # let _ = runtime;
/// # }
/// ```
pub fn build(&mut self) -> io::Result<Runtime> {
// TODO(stjepang): Once we remove the `threadpool_builder` method, remove this line too.
self.threadpool_builder.pool_size(self.core_threads);
let mut reactor_handles = Vec::new();
let mut timer_handles = Vec::new();
let mut timers = Vec::new();
for _ in 0..self.core_threads {
// Create a new reactor.
let reactor = Reactor::new()?;
reactor_handles.push(reactor.handle());
// Create a new timer.
let timer = Timer::new_with_now(reactor, self.clock.clone());
timer_handles.push(timer.handle());
timers.push(Mutex::new(Some(timer)));
}
// Get a handle to the clock for the runtime.
let clock = self.clock.clone();
// Get the current trace dispatcher.
// TODO(eliza): when `tracing-core` is stable enough to take a
// public API dependency, we should allow users to set a custom
// subscriber for the runtime.
#[cfg(feature = "experimental-tracing")]
let dispatch = trace::dispatcher::get_default(trace::Dispatch::clone);
let pool = self
.threadpool_builder
.around_worker(move |w, enter| {
let index = w.id().to_usize();
tokio_reactor::with_default(&reactor_handles[index], enter, |enter| {
clock::with_default(&clock, enter, |enter| {
timer::with_default(&timer_handles[index], enter, |_| {
#[cfg(feature = "experimental-tracing")]
trace::dispatcher::with_default(&dispatch, || {
w.run();
});
#[cfg(not(feature = "experimental-tracing"))]
w.run();
});
})
});
})
.custom_park(move |worker_id| {
let index = worker_id.to_usize();
timers[index]
.lock()
.unwrap()
.take()
.unwrap()
})
.build();
// To support deprecated `reactor()` function
let reactor = Reactor::new()?;
let reactor_handle = reactor.handle();
Ok(Runtime {
inner: Some(Inner {
reactor_handle,
reactor: Mutex::new(Some(reactor)),
pool,
}),
})
}
}