1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
mod entry;
mod stack;
mod state;
pub(crate) use self::entry::WorkerEntry as Entry;
pub(crate) use self::stack::Stack;
pub(crate) use self::state::{Lifecycle, State};
use notifier::Notifier;
use pool::{self, BackupId, Pool};
use sender::Sender;
use shutdown::ShutdownTrigger;
use task::{self, CanBlock, Task};
use tokio_executor;
use futures::{Async, Poll};
use std::cell::Cell;
use std::marker::PhantomData;
use std::rc::Rc;
use std::sync::atomic::Ordering::{AcqRel, Acquire};
use std::sync::Arc;
use std::thread;
use std::time::Duration;
/// Thread worker
///
/// This is passed to the [`around_worker`] callback set on [`Builder`]. This
/// callback is only expected to call [`run`] on it.
///
/// [`Builder`]: struct.Builder.html
/// [`around_worker`]: struct.Builder.html#method.around_worker
/// [`run`]: struct.Worker.html#method.run
#[derive(Debug)]
pub struct Worker {
// Shared scheduler data
pub(crate) pool: Arc<Pool>,
// WorkerEntry index
pub(crate) id: WorkerId,
// Backup thread ID assigned to processing this worker.
backup_id: BackupId,
// Set to the task that is currently being polled by the worker. This is
// needed so that `blocking` blocks are able to interact with this task.
//
// This has to be a raw pointer to make it compile, but great care is taken
// when this is set.
current_task: CurrentTask,
// Set when the thread is in blocking mode.
is_blocking: Cell<bool>,
// Set when the worker should finalize on drop
should_finalize: Cell<bool>,
// Completes the shutdown process when the `ThreadPool` and all `Worker`s get dropped.
trigger: Arc<ShutdownTrigger>,
// Keep the value on the current thread.
_p: PhantomData<Rc<()>>,
}
/// Tracks the state related to the currently running task.
#[derive(Debug)]
struct CurrentTask {
/// This has to be a raw pointer to make it compile, but great care is taken
/// when this is set.
task: Cell<Option<*const Arc<Task>>>,
/// Tracks the blocking capacity allocation state.
can_block: Cell<CanBlock>,
}
/// Identifies a thread pool worker.
///
/// This identifier is unique scoped by the thread pool. It is possible that
/// different thread pool instances share worker identifier values.
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct WorkerId(pub(crate) usize);
// Pointer to the current worker info
thread_local!(static CURRENT_WORKER: Cell<*const Worker> = Cell::new(0 as *const _));
impl Worker {
pub(crate) fn new(
id: WorkerId,
backup_id: BackupId,
pool: Arc<Pool>,
trigger: Arc<ShutdownTrigger>,
) -> Worker {
Worker {
pool,
id,
backup_id,
current_task: CurrentTask::new(),
is_blocking: Cell::new(false),
should_finalize: Cell::new(false),
trigger,
_p: PhantomData,
}
}
pub(crate) fn is_blocking(&self) -> bool {
self.is_blocking.get()
}
/// Run the worker
///
/// Returns `true` if the thread should keep running as a `backup` thread.
pub(crate) fn do_run(&self) -> bool {
// Create another worker... It's ok, this is just a new type around
// `Pool` that is expected to stay on the current thread.
CURRENT_WORKER.with(|c| {
c.set(self as *const _);
let pool = self.pool.clone();
let mut sender = Sender { pool };
// Enter an execution context
let mut enter = tokio_executor::enter().unwrap();
tokio_executor::with_default(&mut sender, &mut enter, |enter| {
if let Some(ref callback) = self.pool.config.around_worker {
callback.call(self, enter);
} else {
self.run();
}
});
});
// Can't be in blocking mode and finalization mode
debug_assert!(!self.is_blocking.get() || !self.should_finalize.get());
self.is_blocking.get()
}
pub(crate) fn with_current<F: FnOnce(Option<&Worker>) -> R, R>(f: F) -> R {
CURRENT_WORKER.with(move |c| {
let ptr = c.get();
if ptr.is_null() {
f(None)
} else {
f(Some(unsafe { &*ptr }))
}
})
}
/// Transition the current worker to a blocking worker
pub(crate) fn transition_to_blocking(&self) -> Poll<(), ::BlockingError> {
use self::CanBlock::*;
// If we get this far, then `current_task` has been set.
let task_ref = self.current_task.get_ref();
// First step is to acquire blocking capacity for the task.
match self.current_task.can_block() {
// Capacity to block has already been allocated to this task.
Allocated => {}
// The task has already requested capacity to block, but there is
// none yet available.
NoCapacity => return Ok(Async::NotReady),
// The task has yet to ask for capacity
CanRequest => {
// Atomically attempt to acquire blocking capacity, and if none
// is available, register the task to be notified once capacity
// becomes available.
match self.pool.poll_blocking_capacity(task_ref)? {
Async::Ready(()) => {
self.current_task.set_can_block(Allocated);
}
Async::NotReady => {
self.current_task.set_can_block(NoCapacity);
return Ok(Async::NotReady);
}
}
}
}
// The task has been allocated blocking capacity. At this point, this is
// when the current thread transitions from a worker to a backup thread.
// To do so requires handing over the worker to another backup thread.
if self.is_blocking.get() {
// The thread is already in blocking mode, so there is nothing else
// to do. Return `Ready` and allow the caller to block the thread.
return Ok(().into());
}
trace!("transition to blocking state");
// Transitioning to blocking requires handing over the worker state to
// another thread so that the work queue can continue to be processed.
self.pool.spawn_thread(self.id.clone(), &self.pool);
// Track that the thread has now fully entered the blocking state.
self.is_blocking.set(true);
Ok(().into())
}
/// Transition from blocking
pub(crate) fn transition_from_blocking(&self) {
// TODO: Attempt to take ownership of the worker again.
}
/// Returns a reference to the worker's identifier.
///
/// This identifier is unique scoped by the thread pool. It is possible that
/// different thread pool instances share worker identifier values.
pub fn id(&self) -> &WorkerId {
&self.id
}
/// Run the worker
///
/// This function blocks until the worker is shutting down.
pub fn run(&self) {
const MAX_SPINS: usize = 3;
const LIGHT_SLEEP_INTERVAL: usize = 32;
// Get the notifier.
let notify = Arc::new(Notifier {
pool: self.pool.clone(),
});
let mut first = true;
let mut spin_cnt = 0;
let mut tick = 0;
while self.check_run_state(first) {
first = false;
// Run the next available task
if self.try_run_task(¬ify) {
if self.is_blocking.get() {
// Exit out of the run state
return;
}
// Poll the reactor and the global queue every now and then to
// ensure no task gets left behind.
if tick % LIGHT_SLEEP_INTERVAL == 0 {
self.sleep_light();
}
tick = tick.wrapping_add(1);
spin_cnt = 0;
// As long as there is work, keep looping.
continue;
}
spin_cnt += 1;
// Yield the thread several times before it actually goes to sleep.
if spin_cnt <= MAX_SPINS {
thread::yield_now();
continue;
}
tick = 0;
spin_cnt = 0;
// Starting to get sleeeeepy
if !self.sleep() {
return;
}
// If there still isn't any work to do, shutdown the worker?
}
// The pool is terminating. However, transitioning the pool state to
// terminated is the very first step of the finalization process. Other
// threads may not see this state and try to spawn a new thread. To
// ensure consistency, before the current thread shuts down, it must
// return the backup token to the stack.
//
// The returned result is ignored because `Err` represents the pool
// shutting down. We are currently aware of this fact.
let _ = self.pool.release_backup(self.backup_id);
self.should_finalize.set(true);
}
/// Try to run a task
///
/// Returns `true` if work was found.
#[inline]
fn try_run_task(&self, notify: &Arc<Notifier>) -> bool {
if self.try_run_owned_task(notify) {
return true;
}
self.try_steal_task(notify)
}
/// Checks the worker's current state, updating it as needed.
///
/// Returns `true` if the worker should run.
#[inline]
fn check_run_state(&self, first: bool) -> bool {
use self::Lifecycle::*;
debug_assert!(!self.is_blocking.get());
let mut state: State = self.entry().state.load(Acquire).into();
loop {
let pool_state: pool::State = self.pool.state.load(Acquire).into();
if pool_state.is_terminated() {
return false;
}
let mut next = state;
match state.lifecycle() {
Running => break,
Notified | Signaled => {
// transition back to running
next.set_lifecycle(Running);
}
Shutdown | Sleeping => {
// The worker should never be in these states when calling
// this function.
panic!("unexpected worker state; lifecycle={:?}", state.lifecycle());
}
}
let actual = self
.entry()
.state
.compare_and_swap(state.into(), next.into(), AcqRel)
.into();
if actual == state {
break;
}
state = actual;
}
// `first` is set to true the first time this function is called after
// the thread has started.
//
// This check is to handle the scenario where a worker gets signaled
// while it is already happily running. The `is_signaled` state is
// intended to wake up a worker that has been previously sleeping in
// effect increasing the number of active workers. If this is the first
// time `check_run_state` is called, then being in a signalled state is
// normal and the thread was started to handle it. However, if this is
// **not** the first time the fn was called, then the number of active
// workers has not been increased by the signal, so `signal_work` has to
// be called again to try to wake up another worker.
//
// For example, if the thread pool is configured to allow 4 workers.
// Worker 1 is processing tasks from its `deque`. Worker 2 receives its
// first task. Worker 2 will pick a random worker to signal. It does
// this by popping off the sleep stack, but there is no guarantee that
// workers on the sleep stack are actually sleeping. It is possible that
// Worker 1 gets signaled.
//
// Without this check, in the above case, no additional workers will get
// started, which results in the thread pool permanently being at 2
// workers even though it should reach 4.
if !first && state.is_signaled() {
trace!("Worker::check_run_state; delegate signal");
// This worker is not ready to be signaled, so delegate the signal
// to another worker.
self.pool.signal_work(&self.pool);
}
true
}
/// Runs the next task on this worker's queue.
///
/// Returns `true` if work was found.
fn try_run_owned_task(&self, notify: &Arc<Notifier>) -> bool {
// Poll the internal queue for a task to run
match self.entry().pop_task() {
Some(task) => {
self.run_task(task, notify);
true
}
None => false,
}
}
/// Tries to steal a task from another worker.
///
/// Returns `true` if work was found
fn try_steal_task(&self, notify: &Arc<Notifier>) -> bool {
use crossbeam_deque::Steal;
debug_assert!(!self.is_blocking.get());
let len = self.pool.workers.len();
let mut idx = self.pool.rand_usize() % len;
let mut found_work = false;
let start = idx;
loop {
if idx < len {
match self.pool.workers[idx].steal_tasks(self.entry()) {
Steal::Success(task) => {
trace!("stole task from another worker");
self.run_task(task, notify);
trace!(
"try_steal_task -- signal_work; self={}; from={}",
self.id.0,
idx
);
// Signal other workers that work is available
//
// TODO: Should this be called here or before
// `run_task`?
self.pool.signal_work(&self.pool);
return true;
}
Steal::Empty => {}
Steal::Retry => found_work = true,
}
idx += 1;
} else {
idx = 0;
}
if idx == start {
break;
}
}
found_work
}
fn run_task(&self, task: Arc<Task>, notify: &Arc<Notifier>) {
use task::Run::*;
// If this is the first time this task is being polled, register it so that we can keep
// track of tasks that are in progress.
if task.reg_worker.get().is_none() {
task.reg_worker.set(Some(self.id.0 as u32));
self.entry().register_task(&task);
}
let run = self.run_task2(&task, notify);
// TODO: Try to claim back the worker state in case the backup thread
// did not start up fast enough. This is a performance optimization.
match run {
Idle => {}
Schedule => {
if self.is_blocking.get() {
// The future has been notified while it was running.
// However, the future also entered a blocking section,
// which released the worker state from this thread.
//
// This means that scheduling the future must be done from
// a point of view external to the worker set.
//
// We have to call `submit_external` instead of `submit`
// here because `self` is still set as the current worker.
self.pool.submit_external(task, &self.pool);
} else {
self.entry().push_internal(task);
}
}
Complete => {
let mut state: pool::State = self.pool.state.load(Acquire).into();
loop {
let mut next = state;
next.dec_num_futures();
let actual = self
.pool
.state
.compare_and_swap(state.into(), next.into(), AcqRel)
.into();
if actual == state {
trace!("task complete; state={:?}", next);
if state.num_futures() == 1 {
// If the thread pool has been flagged as shutdown,
// start terminating workers. This involves waking
// up any sleeping worker so that they can notice
// the shutdown state.
if next.is_terminated() {
self.pool.terminate_sleeping_workers();
}
}
// Find which worker polled this task first.
let worker = task.reg_worker.get().unwrap() as usize;
// Unregister the task from the worker it was registered in.
if !self.is_blocking.get() && worker == self.id.0 {
self.entry().unregister_task(task);
} else {
self.pool.workers[worker].remotely_complete_task(task);
}
// The worker's run loop will detect the shutdown state
// next iteration.
return;
}
state = actual;
}
}
}
}
/// Actually run the task. This is where `Worker::current_task` is set.
///
/// Great care is needed to ensure that `current_task` is unset in this
/// function.
fn run_task2(&self, task: &Arc<Task>, notify: &Arc<Notifier>) -> task::Run {
struct Guard<'a> {
worker: &'a Worker,
}
impl<'a> Drop for Guard<'a> {
fn drop(&mut self) {
// A task is allocated at run when it was explicitly notified
// that the task has capacity to block. When this happens, that
// capacity is automatically allocated to the notified task.
// This capacity is "use it or lose it", so if the thread is not
// transitioned to blocking in this call, then another task has
// to be notified.
//
// If the task has consumed its blocking allocation but hasn't
// used it, it must be given to some other task instead.
if !self.worker.is_blocking.get() {
let can_block = self.worker.current_task.can_block();
if can_block == CanBlock::Allocated {
self.worker.pool.notify_blocking_task(&self.worker.pool);
}
}
self.worker.current_task.clear();
}
}
// Set `current_task`
self.current_task.set(task, CanBlock::CanRequest);
// Create the guard, this ensures that `current_task` is unset when the
// function returns, even if the return is caused by a panic.
let _g = Guard { worker: self };
task.run(notify)
}
/// Put the worker to sleep
///
/// Returns `true` if woken up due to new work arriving.
fn sleep(&self) -> bool {
use self::Lifecycle::*;
// Putting a worker to sleep is a multipart operation. This is, in part,
// due to the fact that a worker can be notified without it being popped
// from the sleep stack. Extra care is needed to deal with this.
trace!("Worker::sleep; worker={:?}", self.id);
let mut state: State = self.entry().state.load(Acquire).into();
// The first part of the sleep process is to transition the worker state
// to "pushed". Now, it may be that the worker is already pushed on the
// sleeper stack, in which case, we don't push again.
loop {
let mut next = state;
match state.lifecycle() {
Running => {
// Try setting the pushed state
next.set_pushed();
// Transition the worker state to sleeping
next.set_lifecycle(Sleeping);
}
Notified | Signaled => {
// No need to sleep, transition back to running and move on.
next.set_lifecycle(Running);
}
Shutdown | Sleeping => {
// The worker cannot transition to sleep when already in a
// sleeping state.
panic!("unexpected worker state; actual={:?}", state.lifecycle());
}
}
let actual = self
.entry()
.state
.compare_and_swap(state.into(), next.into(), AcqRel)
.into();
if actual == state {
if state.is_notified() {
// The previous state was notified, so we don't need to
// sleep.
return true;
}
if !state.is_pushed() {
debug_assert!(next.is_pushed());
trace!(" sleeping -- push to stack; idx={}", self.id.0);
// We obtained permission to push the worker into the
// sleeper queue.
if let Err(_) = self.pool.push_sleeper(self.id.0) {
trace!(" sleeping -- push to stack failed; idx={}", self.id.0);
// The push failed due to the pool being terminated.
//
// This is true because the "work" being woken up for is
// shutting down.
return true;
}
}
break;
}
state = actual;
}
trace!(" -> starting to sleep; idx={}", self.id.0);
// Do a quick check to see if there are any notifications in the
// reactor or new tasks in the global queue. Since this call will
// clear the wakeup token, we need to check the state again and
// only after that go to sleep.
self.sleep_light();
// The state has been transitioned to sleeping, we can now wait by
// calling the parker. This is done in a loop as condvars can wakeup
// spuriously.
loop {
// Reload the state
state = self.entry().state.load(Acquire).into();
// If the worker has been notified, transition back to running.
match state.lifecycle() {
Sleeping => {
// Still sleeping. Park again.
}
Notified | Signaled => {
// Transition back to running
loop {
let mut next = state;
next.set_lifecycle(Running);
let actual = self
.entry()
.state
.compare_and_swap(state.into(), next.into(), AcqRel)
.into();
if actual == state {
return true;
}
state = actual;
}
}
Shutdown | Running => {
// To get here, the block above transitioned the state to
// `Sleeping`. No other thread can concurrently
// transition to `Shutdown` or `Running`.
unreachable!();
}
}
self.entry().park();
trace!(" -> wakeup; idx={}", self.id.0);
}
}
/// This doesn't actually put the thread to sleep. It calls
/// `park.park_timeout` with a duration of 0. This allows the park
/// implementation to perform any work that might be done on an interval.
///
/// Returns `true` if this worker has tasks in its queue.
fn sleep_light(&self) {
self.entry().park_timeout(Duration::from_millis(0));
use crossbeam_deque::Steal;
loop {
match self.pool.queue.steal_batch(&self.entry().worker) {
Steal::Success(()) => {
self.pool.signal_work(&self.pool);
break;
}
Steal::Empty => break,
Steal::Retry => {}
}
}
}
fn entry(&self) -> &Entry {
debug_assert!(!self.is_blocking.get());
&self.pool.workers[self.id.0]
}
}
impl Drop for Worker {
fn drop(&mut self) {
trace!("shutting down thread; idx={}", self.id.0);
if self.should_finalize.get() {
// Drain the work queue
self.entry().drain_tasks();
}
}
}
// ===== impl CurrentTask =====
impl CurrentTask {
/// Returns a default `CurrentTask` representing no task.
fn new() -> CurrentTask {
CurrentTask {
task: Cell::new(None),
can_block: Cell::new(CanBlock::CanRequest),
}
}
/// Returns a reference to the task.
fn get_ref(&self) -> &Arc<Task> {
unsafe { &*self.task.get().unwrap() }
}
fn can_block(&self) -> CanBlock {
use self::CanBlock::*;
match self.can_block.get() {
Allocated => Allocated,
CanRequest | NoCapacity => {
let can_block = self.get_ref().consume_blocking_allocation();
self.can_block.set(can_block);
can_block
}
}
}
fn set_can_block(&self, can_block: CanBlock) {
self.can_block.set(can_block);
}
fn set(&self, task: &Arc<Task>, can_block: CanBlock) {
self.task.set(Some(task as *const _));
self.can_block.set(can_block);
}
/// Reset the `CurrentTask` to null state.
fn clear(&self) {
self.task.set(None);
self.can_block.set(CanBlock::CanRequest);
}
}
// ===== impl WorkerId =====
impl WorkerId {
/// Returns a `WorkerId` representing the worker entry at index `idx`.
pub(crate) fn new(idx: usize) -> WorkerId {
WorkerId(idx)
}
/// Returns this identifier represented as an integer.
///
/// Worker identifiers in a single thread pool are guaranteed to correspond to integers in the
/// range `0..pool_size`.
pub fn to_usize(&self) -> usize {
self.0
}
}