logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
use super::real;
use crate::geometry::Real;
use core::f32::consts::PI;
use core::ops::{Add, AddAssign, Neg, Sub, SubAssign};
#[cfg(not(feature = "fixed_point"))]
#[allow(unused_imports)]
use micromath::F32Ext;

pub(crate) mod angle_consts {
    use super::{real, Angle};

    pub(crate) const ANGLE_90DEG: Angle = Angle(real::FRAC_PI_2);
    pub(crate) const ANGLE_180DEG: Angle = Angle(real::PI);
    pub(crate) const ANGLE_360DEG: Angle = Angle(real::TAU);
}

/// Angle.
///
/// `Angle` is used to define the value of an angle.
///
/// # Examples
///
/// ## Create an `Angle` from a value
///
/// ```rust
/// use embedded_graphics::geometry::{Angle, AngleUnit};
/// use core::f32::consts::PI;
///
/// // Create an angle using the `from_degrees` constructor method
/// let angle_a = Angle::from_degrees(10.0);
/// let angle_b = Angle::from_radians(PI);
///
/// // Angles can also be created using the [AngleUnit](./trait.AngleUnit.html) trait
/// let angle_c = 30.0.deg();
/// let angle_d = PI.rad();
/// ```
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Angle(Real);

impl Angle {
    /// Creates an angle defined in degrees.
    pub fn from_degrees(angle: f32) -> Self {
        Angle((angle * PI / 180.0).into())
    }

    /// Creates an angle defined in radians.
    pub fn from_radians(angle: f32) -> Self {
        Angle(angle.into())
    }

    /// Creates a zero degree angle.
    pub fn zero() -> Self {
        Angle(0.into())
    }

    /// Compute the absolute value of the angle.
    pub fn abs(self) -> Self {
        Angle(self.0.abs())
    }

    /// Normalize the angle to less than one full rotation (ie. in the range 0..360).
    pub fn normalize(self) -> Self {
        Angle(self.0.rem_euclid((2.0 * PI).into()))
    }

    /// Return numerical value of the angle in degree
    pub fn to_degrees(self) -> f32 {
        let angle: f32 = self.0.into();
        180.0 * angle / PI
    }

    /// Return numerical value of the angle in radian
    pub fn to_radians(self) -> f32 {
        self.0.into()
    }
}

/// AngleUnit trait.
///
/// `AngleUnit` is a trait to convert numbers into angle by appending .deg() or .rad()
/// to the number as if it was a unit.
///
/// # Examples
///
/// ## Create an `Angle` from a value using `AngleUnit`
///
/// ```rust
/// use embedded_graphics::geometry::AngleUnit;
/// use core::f32::consts::PI;
///
/// // Create an angle using the `AngleUnit` methods
/// let angle_a = 30.0.deg();
/// let angle_b = PI.rad();
/// ```
pub trait AngleUnit {
    /// Convert a number (interpreted as degrees) to an `Angle`.
    fn deg(self) -> Angle;

    /// Convert a number (interpreted as radians) to an `Angle`.
    fn rad(self) -> Angle;
}

impl AngleUnit for f32 {
    fn deg(self) -> Angle {
        Angle::from_degrees(self)
    }

    fn rad(self) -> Angle {
        Angle::from_radians(self)
    }
}

pub(crate) trait Trigonometry {
    /// Get the sine of the angle.
    fn sin(self) -> Real;

    /// Get the cosine of the angle.
    fn cos(self) -> Real;

    /// Get the tangent of the angle.
    fn tan(self) -> Option<Real>;
}

#[cfg(not(feature = "fixed_point"))]
impl Trigonometry for Angle {
    fn sin(self) -> Real {
        let angle: f32 = self.0.into();
        angle.sin().into()
    }

    fn cos(self) -> Real {
        let angle: f32 = self.0.into();
        angle.cos().into()
    }

    fn tan(self) -> Option<Real> {
        let angle: f32 = self.0.into();
        let tan = angle.tan();
        // FRAC_PI_2.tan() has no value, but the approximate method used by micromath actually return a huge
        // value which is > 20000000.0, so we check for this to decide that the angle was approximately
        // FRAC_PI_2 and that tan() has actually no value.
        if tan.is_nan() || tan.abs() > 20000000.0 {
            None
        } else {
            Some(tan.into())
        }
    }
}

#[cfg(feature = "fixed_point")]
impl Trigonometry for Angle {
    fn sin(self) -> Real {
        use fixed::types::I16F16;
        const SIN: [I16F16; 91] = [
            // Ideally we could make the compiler generate those values, but for now sin() is not a const fn,
            // so it can't be used here. Here is how it would look like:
            //   I16F16::from_bits((0f64.sin() * (1 << 16) as f64).round()))),
            I16F16::from_bits(0),
            I16F16::from_bits(1144),
            I16F16::from_bits(2287),
            I16F16::from_bits(3430),
            I16F16::from_bits(4572),
            I16F16::from_bits(5712),
            I16F16::from_bits(6850),
            I16F16::from_bits(7987),
            I16F16::from_bits(9121),
            I16F16::from_bits(10252),
            I16F16::from_bits(11380),
            I16F16::from_bits(12505),
            I16F16::from_bits(13626),
            I16F16::from_bits(14742),
            I16F16::from_bits(15855),
            I16F16::from_bits(16962),
            I16F16::from_bits(18064),
            I16F16::from_bits(19161),
            I16F16::from_bits(20252),
            I16F16::from_bits(21336),
            I16F16::from_bits(22415),
            I16F16::from_bits(23486),
            I16F16::from_bits(24550),
            I16F16::from_bits(25607),
            I16F16::from_bits(26656),
            I16F16::from_bits(27697),
            I16F16::from_bits(28729),
            I16F16::from_bits(29753),
            I16F16::from_bits(30767),
            I16F16::from_bits(31772),
            I16F16::from_bits(32768),
            I16F16::from_bits(33754),
            I16F16::from_bits(34729),
            I16F16::from_bits(35693),
            I16F16::from_bits(36647),
            I16F16::from_bits(37590),
            I16F16::from_bits(38521),
            I16F16::from_bits(39441),
            I16F16::from_bits(40348),
            I16F16::from_bits(41243),
            I16F16::from_bits(42126),
            I16F16::from_bits(42995),
            I16F16::from_bits(43852),
            I16F16::from_bits(44695),
            I16F16::from_bits(45525),
            I16F16::from_bits(46341),
            I16F16::from_bits(47143),
            I16F16::from_bits(47930),
            I16F16::from_bits(48703),
            I16F16::from_bits(49461),
            I16F16::from_bits(50203),
            I16F16::from_bits(50931),
            I16F16::from_bits(51643),
            I16F16::from_bits(52339),
            I16F16::from_bits(53020),
            I16F16::from_bits(53684),
            I16F16::from_bits(54332),
            I16F16::from_bits(54963),
            I16F16::from_bits(55578),
            I16F16::from_bits(56175),
            I16F16::from_bits(56756),
            I16F16::from_bits(57319),
            I16F16::from_bits(57865),
            I16F16::from_bits(58393),
            I16F16::from_bits(58903),
            I16F16::from_bits(59396),
            I16F16::from_bits(59870),
            I16F16::from_bits(60326),
            I16F16::from_bits(60764),
            I16F16::from_bits(61183),
            I16F16::from_bits(61584),
            I16F16::from_bits(61966),
            I16F16::from_bits(62328),
            I16F16::from_bits(62672),
            I16F16::from_bits(62997),
            I16F16::from_bits(63303),
            I16F16::from_bits(63589),
            I16F16::from_bits(63856),
            I16F16::from_bits(64104),
            I16F16::from_bits(64332),
            I16F16::from_bits(64540),
            I16F16::from_bits(64729),
            I16F16::from_bits(64898),
            I16F16::from_bits(65048),
            I16F16::from_bits(65177),
            I16F16::from_bits(65287),
            I16F16::from_bits(65376),
            I16F16::from_bits(65446),
            I16F16::from_bits(65496),
            I16F16::from_bits(65526),
            I16F16::from_bits(65536),
        ];
        let degree: i32 = (Real::from(180) * self.0 / real::PI).round().into();
        let degree = degree.rem_euclid(360) as usize;
        let sin = if degree <= 90 {
            SIN[degree]
        } else if degree <= 180 {
            SIN[180 - degree]
        } else if degree <= 270 {
            -SIN[degree - 180]
        } else {
            -SIN[360 - degree]
        };
        sin.into()
    }

    fn cos(self) -> Real {
        (self + angle_consts::ANGLE_90DEG).sin()
    }

    fn tan(self) -> Option<Real> {
        let cos = self.cos();
        if cos != Real::zero() {
            Some(self.sin() / cos)
        } else {
            None
        }
    }
}

impl Add for Angle {
    type Output = Angle;

    fn add(self, other: Angle) -> Angle {
        Angle(self.0 + other.0)
    }
}

impl AddAssign for Angle {
    fn add_assign(&mut self, other: Angle) {
        self.0 += other.0;
    }
}

impl Sub for Angle {
    type Output = Angle;

    fn sub(self, other: Angle) -> Angle {
        Angle(self.0 - other.0)
    }
}

impl SubAssign for Angle {
    fn sub_assign(&mut self, other: Angle) {
        self.0 -= other.0;
    }
}

impl Neg for Angle {
    type Output = Angle;

    fn neg(self) -> Angle {
        Angle(-self.0)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use float_cmp::{approx_eq, ApproxEq, F32Margin};

    impl ApproxEq for Angle {
        type Margin = F32Margin;

        fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
            self.0.approx_eq(other.0, margin.into())
        }
    }

    #[test]
    fn angles_can_be_added() {
        let left = Angle::from_degrees(10.0);
        let right = Angle::from_degrees(30.0);

        assert!(approx_eq!(
            Angle,
            left + right,
            Angle::from_degrees(40.0),
            epsilon = 0.0001
        ));
    }

    #[test]
    fn angles_can_be_subtracted() {
        let left = Angle::from_degrees(30.0);
        let right = Angle::from_degrees(10.0);

        assert!(approx_eq!(
            Angle,
            left - right,
            Angle::from_degrees(20.0),
            epsilon = 0.0001
        ));
    }

    #[test]
    fn angles_can_be_absoluted() {
        let angle = Angle::from_degrees(30.0).abs();
        assert_eq!(angle, Angle::from_degrees(30.0));

        let angle = Angle::from_degrees(-30.0).abs();
        assert_eq!(angle, Angle::from_degrees(30.0));
    }

    #[test]
    fn angle_unit() {
        assert_eq!(180.0.deg(), Angle::from_degrees(180.0));
        assert_eq!(PI.rad(), Angle::from_radians(PI));
    }

    #[test]
    fn from_radians() {
        assert_eq!(Angle(PI.into()), Angle::from_radians(PI));
    }

    #[test]
    fn to_radians() {
        let angle = Angle(PI.into()).to_radians();
        assert!(approx_eq!(f32, angle, PI, epsilon = 0.0001));
    }

    #[test]
    fn from_degrees() {
        let angle = Angle::from_degrees(180.0);
        assert!(approx_eq!(f32, angle.0.into(), PI, epsilon = 0.0001));
    }

    #[test]
    fn to_degrees() {
        let angle = Angle(PI.into()).to_degrees();
        assert!(approx_eq!(f32, angle, 180.0, epsilon = 0.001));
    }

    #[test]
    fn sin_correct() {
        let degree_sin_pairs = [
            (-90.0, -1.0),
            (-60.0, -0.86602540),
            (-45.0, -0.70710678),
            (-30.0, -0.5),
            (0.0, 0.0),
            (30.0, 0.5),
            (45.0, 0.70710678),
            (60.0, 0.86602540),
            (90.0, 1.0),
            (120.0, 0.86602540),
            (135.0, 0.70710678),
            (150.0, 0.5),
            (180.0, 0.0),
            (210.0, -0.5),
            (225.0, -0.70710678),
            (240.0, -0.86602540),
            (270.0, -1.0),
        ];

        for (angle, sin) in &degree_sin_pairs {
            assert!(approx_eq!(
                Real,
                angle.deg().sin(),
                (*sin).into(),
                epsilon = 0.0001
            ));
        }
    }

    #[test]
    fn cos_correct() {
        let degree_cos_pairs = [
            (-90.0, 0.0),
            (-60.0, 0.5),
            (-45.0, 0.70710678),
            (-30.0, 0.86602540),
            (0.0, 1.0),
            (30.0, 0.86602540),
            (45.0, 0.70710678),
            (60.0, 0.5),
            (90.0, 0.0),
            (120.0, -0.5),
            (135.0, -0.70710678),
            (150.0, -0.86602540),
            (180.0, -1.0),
            (210.0, -0.86602540),
            (225.0, -0.70710678),
            (240.0, -0.5),
            (270.0, -0.0),
        ];

        for (angle, cos) in &degree_cos_pairs {
            assert!(approx_eq!(
                Real,
                angle.deg().cos(),
                (*cos).into(),
                epsilon = 0.0001
            ));
        }
    }

    #[test]
    fn tan_correct() {
        let degree_tan_pairs = [
            (-60.0, -1.73205080),
            (-45.0, -1.0),
            (-30.0, -0.57735026),
            (0.0, 0.0),
            (30.0, 0.57735026),
            (45.0, 1.0),
            (60.0, 1.73205080),
        ];

        for (angle, tan) in &degree_tan_pairs {
            assert!(approx_eq!(
                Real,
                angle.deg().tan().unwrap(),
                (*tan).into(),
                epsilon = 0.0001
            ));
        }

        assert_eq!((-90.0.deg()).tan(), None);
        assert_eq!(90.0.deg().tan(), None);
    }
}