pub trait QueryDsl: Sized {
Show 24 methods
fn distinct(self) -> Distinct<Self>
where
Self: DistinctDsl,
{ ... }
fn distinct_on<Expr>(self, expr: Expr) -> DistinctOn<Self, Expr>
where
Self: DistinctOnDsl<Expr>,
{ ... }
fn select<Selection>(self, selection: Selection) -> Select<Self, Selection>
where
Selection: Expression,
Self: SelectDsl<Selection>,
{ ... }
fn count(self) -> Select<Self, CountStar>
where
Self: SelectDsl<CountStar>,
{ ... }
fn inner_join<Rhs>(self, rhs: Rhs) -> Self::Output
where
Self: JoinWithImplicitOnClause<Rhs, Inner>,
{ ... }
fn left_outer_join<Rhs>(self, rhs: Rhs) -> Self::Output
where
Self: JoinWithImplicitOnClause<Rhs, LeftOuter>,
{ ... }
fn left_join<Rhs>(self, rhs: Rhs) -> Self::Output
where
Self: JoinWithImplicitOnClause<Rhs, LeftOuter>,
{ ... }
fn filter<Predicate>(self, predicate: Predicate) -> Filter<Self, Predicate>
where
Self: FilterDsl<Predicate>,
{ ... }
fn or_filter<Predicate>(
self,
predicate: Predicate
) -> OrFilter<Self, Predicate>
where
Self: OrFilterDsl<Predicate>,
{ ... }
fn find<PK>(self, id: PK) -> Find<Self, PK>
where
Self: FindDsl<PK>,
{ ... }
fn order<Expr>(self, expr: Expr) -> Order<Self, Expr>
where
Expr: Expression,
Self: OrderDsl<Expr>,
{ ... }
fn order_by<Expr>(self, expr: Expr) -> Order<Self, Expr>
where
Expr: Expression,
Self: OrderDsl<Expr>,
{ ... }
fn then_order_by<Order>(self, order: Order) -> ThenOrderBy<Self, Order>
where
Self: ThenOrderDsl<Order>,
{ ... }
fn limit(self, limit: i64) -> Limit<Self>
where
Self: LimitDsl,
{ ... }
fn offset(self, offset: i64) -> Offset<Self>
where
Self: OffsetDsl,
{ ... }
fn for_update(self) -> ForUpdate<Self>
where
Self: ForUpdateDsl,
{ ... }
fn for_no_key_update(self) -> ForNoKeyUpdate<Self>
where
Self: LockingDsl<ForNoKeyUpdate>,
{ ... }
fn for_share(self) -> ForShare<Self>
where
Self: LockingDsl<ForShare>,
{ ... }
fn for_key_share(self) -> ForKeyShare<Self>
where
Self: LockingDsl<ForKeyShare>,
{ ... }
fn skip_locked(self) -> SkipLocked<Self>
where
Self: ModifyLockDsl<SkipLocked>,
{ ... }
fn no_wait(self) -> NoWait<Self>
where
Self: ModifyLockDsl<NoWait>,
{ ... }
fn into_boxed<'a, DB>(self) -> IntoBoxed<'a, Self, DB>
where
DB: Backend,
Self: BoxedDsl<'a, DB>,
{ ... }
fn single_value(self) -> SingleValue<Self>
where
Self: SingleValueDsl,
{ ... }
fn nullable(self) -> NullableSelect<Self>
where
Self: SelectNullableDsl,
{ ... }
}
Expand description
Methods used to construct select statements.
Provided methods
fn distinct(self) -> Distinct<Self> where
Self: DistinctDsl,
fn distinct(self) -> Distinct<Self> where
Self: DistinctDsl,
Adds the DISTINCT
keyword to a query.
This method will override any previous distinct clause that was present.
For example, on PostgreSQL, foo.distinct_on(bar).distinct()
will
create the same query as foo.distinct()
.
Example
diesel::insert_into(users)
.values(&vec![name.eq("Sean"); 3])
.execute(&connection)?;
let names = users.select(name).load::<String>(&connection)?;
let distinct_names = users.select(name).distinct().load::<String>(&connection)?;
assert_eq!(vec!["Sean"; 3], names);
assert_eq!(vec!["Sean"; 1], distinct_names);
fn distinct_on<Expr>(self, expr: Expr) -> DistinctOn<Self, Expr> where
Self: DistinctOnDsl<Expr>,
fn distinct_on<Expr>(self, expr: Expr) -> DistinctOn<Self, Expr> where
Self: DistinctOnDsl<Expr>,
Adds the DISTINCT ON
clause to a query.
Example
diesel::insert_into(animals)
.values(&vec![
(species.eq("dog"), name.eq(Some("Jack")), legs.eq(4)),
(species.eq("dog"), name.eq(None), legs.eq(4)),
(species.eq("spider"), name.eq(None), legs.eq(8)),
])
.execute(&connection)
.unwrap();
let all_animals = animals.select((species, name, legs)).load(&connection);
let distinct_animals = animals.select((species, name, legs)).distinct_on(species).load(&connection);
assert_eq!(Ok(vec![Animal::new("dog", Some("Jack"), 4),
Animal::new("dog", None, 4),
Animal::new("spider", None, 8)]), all_animals);
assert_eq!(Ok(vec![Animal::new("dog", Some("Jack"), 4),
Animal::new("spider", None, 8)]), distinct_animals);
fn select<Selection>(self, selection: Selection) -> Select<Self, Selection> where
Selection: Expression,
Self: SelectDsl<Selection>,
fn select<Selection>(self, selection: Selection) -> Select<Self, Selection> where
Selection: Expression,
Self: SelectDsl<Selection>,
Adds a SELECT
clause to the query.
If there was already a select clause present, it will be overridden.
For example, foo.select(bar).select(baz)
will produce the same
query as foo.select(baz)
.
By default, the select clause will be roughly equivalent to SELECT *
(however, Diesel will list all columns to ensure that they are in the
order we expect).
select
has slightly stricter bounds on its arguments than other
methods. In particular, when used with a left outer join, .nullable
must be called on columns that come from the right side of a join. It
can be called on the column itself, or on an expression containing that
column. title.nullable()
, lower(title).nullable()
, and (id, title).nullable()
would all be valid.
Examples
// By default, all columns will be selected
let all_users = users.load::<(i32, String)>(&connection)?;
assert_eq!(vec![(1, String::from("Sean")), (2, String::from("Tess"))], all_users);
let all_names = users.select(name).load::<String>(&connection)?;
assert_eq!(vec!["Sean", "Tess"], all_names);
When used with a left join
let join = users::table.left_join(posts::table);
// By default, all columns from both tables are selected
let all_data = join.load::<(User, Option<Post>)>(&connection)?;
let expected_data = vec![
(User::new(1, "Sean"), Some(Post::new(post_id, 1, "Sean's Post"))),
(User::new(2, "Tess"), None),
];
assert_eq!(expected_data, all_data);
// Since `posts` is on the right side of a left join, `.nullable` is
// needed.
let names_and_titles = join.select((users::name, posts::title.nullable()))
.load::<(String, Option<String>)>(&connection)?;
let expected_data = vec![
(String::from("Sean"), Some(String::from("Sean's Post"))),
(String::from("Tess"), None),
];
assert_eq!(expected_data, names_and_titles);
Get the count of a query. This is equivalent to .select(count_star())
Example
let count = users.count().get_result(&connection);
assert_eq!(Ok(2), count);
fn inner_join<Rhs>(self, rhs: Rhs) -> Self::Output where
Self: JoinWithImplicitOnClause<Rhs, Inner>,
fn inner_join<Rhs>(self, rhs: Rhs) -> Self::Output where
Self: JoinWithImplicitOnClause<Rhs, Inner>,
Join two tables using a SQL INNER JOIN
.
If you have invoked joinable!
for the two tables, you can pass that
table directly. Otherwise you will need to use .on
to specify the ON
clause.
You can join to as many tables as you’d like in a query, with the restriction that no table can appear in the query more than once. The reason for this restriction is that one of the appearances would require aliasing, and we do not currently have a fleshed out story for dealing with table aliases.
You will also need to call allow_tables_to_appear_in_same_query!
.
If you are using infer_schema!
or diesel print-schema
, this will
have been generated for you.
See the documentation for allow_tables_to_appear_in_same_query!
for
details.
Diesel expects multi-table joins to be semantically grouped based on the
relationships. For example, users.inner_join(posts.inner_join(comments))
is not the same as users.inner_join(posts).inner_join(comments)
. The first
would deserialize into (User, (Post, Comment))
and generate the following
SQL:
SELECT * FROM users
INNER JOIN posts ON posts.user_id = users.id
INNER JOIN comments ON comments.post_id = posts.id
While the second query would deserialize into (User, Post, Comment)
and
generate the following SQL:
SELECT * FROM users
INNER JOIN posts ON posts.user_id = users.id
INNER JOIN comments ON comments.user_id = users.id
Examples
With implicit ON
clause
joinable!(posts -> users (user_id));
allow_tables_to_appear_in_same_query!(users, posts);
let data = users.inner_join(posts)
.select((name, title))
.load(&connection);
let expected_data = vec![
(String::from("Sean"), String::from("My first post")),
(String::from("Sean"), String::from("About Rust")),
(String::from("Tess"), String::from("My first post too")),
];
assert_eq!(Ok(expected_data), data);
With explicit ON
clause
allow_tables_to_appear_in_same_query!(users, posts);
diesel::insert_into(posts)
.values(&vec![
(user_id.eq(1), title.eq("Sean's post")),
(user_id.eq(2), title.eq("Sean is a jerk")),
])
.execute(&connection)
.unwrap();
let data = users
.inner_join(posts.on(title.like(name.concat("%"))))
.select((name, title))
.load(&connection);
let expected_data = vec![
(String::from("Sean"), String::from("Sean's post")),
(String::from("Sean"), String::from("Sean is a jerk")),
];
assert_eq!(Ok(expected_data), data);
fn left_outer_join<Rhs>(self, rhs: Rhs) -> Self::Output where
Self: JoinWithImplicitOnClause<Rhs, LeftOuter>,
fn left_outer_join<Rhs>(self, rhs: Rhs) -> Self::Output where
Self: JoinWithImplicitOnClause<Rhs, LeftOuter>,
Join two tables using a SQL LEFT OUTER JOIN
.
Behaves similarly to inner_join
, but will produce a left join
instead. See inner_join
for usage examples.
Alias for left_outer_join
.
Adds to the WHERE
clause of a query.
If there is already a WHERE
clause, the result will be old AND new
.
Example:
let seans_id = users.filter(name.eq("Sean")).select(id)
.first(&connection);
assert_eq!(Ok(1), seans_id);
let tess_id = users.filter(name.eq("Tess")).select(id)
.first(&connection);
assert_eq!(Ok(2), tess_id);
fn or_filter<Predicate>(self, predicate: Predicate) -> OrFilter<Self, Predicate> where
Self: OrFilterDsl<Predicate>,
fn or_filter<Predicate>(self, predicate: Predicate) -> OrFilter<Self, Predicate> where
Self: OrFilterDsl<Predicate>,
Adds to the WHERE
clause of a query using OR
If there is already a WHERE
clause, the result will be (old OR new)
.
Calling foo.filter(bar).or_filter(baz)
is identical to foo.filter(bar.or(baz))
.
However, the second form is much harder to do dynamically.
Example:
diesel::insert_into(animals)
.values(&vec![
(species.eq("cat"), legs.eq(4), name.eq("Sinatra")),
(species.eq("dog"), legs.eq(3), name.eq("Fido")),
(species.eq("spider"), legs.eq(8), name.eq("Charlotte")),
])
.execute(&connection)?;
let good_animals = animals
.filter(name.eq("Fido"))
.or_filter(legs.eq(4))
.select(name)
.get_results::<Option<String>>(&connection)?;
let expected = vec![
Some(String::from("Sinatra")),
Some(String::from("Fido")),
];
assert_eq!(expected, good_animals);
Attempts to find a single record from the given table by primary key.
Example
let sean = (1, "Sean".to_string());
let tess = (2, "Tess".to_string());
assert_eq!(Ok(sean), users.find(1).first(&connection));
assert_eq!(Ok(tess), users.find(2).first(&connection));
assert_eq!(Err::<(i32, String), _>(NotFound), users.find(3).first(&connection));
fn order<Expr>(self, expr: Expr) -> Order<Self, Expr> where
Expr: Expression,
Self: OrderDsl<Expr>,
fn order<Expr>(self, expr: Expr) -> Order<Self, Expr> where
Expr: Expression,
Self: OrderDsl<Expr>,
Sets the order clause of a query.
If there was already a order clause, it will be overridden. See
also:
.desc()
and
.asc()
Ordering by multiple columns can be achieved by passing a tuple of those
columns.
To construct an order clause of an unknown number of columns,
see QueryDsl::then_order_by
Examples
diesel::insert_into(users)
.values(&vec![
name.eq("Saul"),
name.eq("Steve"),
name.eq("Stan"),
])
.execute(&connection)?;
let ordered_names = users.select(name)
.order(name.desc())
.load::<String>(&connection)?;
assert_eq!(vec!["Steve", "Stan", "Saul"], ordered_names);
diesel::insert_into(users).values(name.eq("Stan")).execute(&connection)?;
let data = users.select((name, id))
.order((name.asc(), id.desc()))
.load(&connection)?;
let expected_data = vec![
(String::from("Saul"), 3),
(String::from("Stan"), 6),
(String::from("Stan"), 5),
(String::from("Steve"), 4),
];
assert_eq!(expected_data, data);
fn order_by<Expr>(self, expr: Expr) -> Order<Self, Expr> where
Expr: Expression,
Self: OrderDsl<Expr>,
fn order_by<Expr>(self, expr: Expr) -> Order<Self, Expr> where
Expr: Expression,
Self: OrderDsl<Expr>,
Alias for order
fn then_order_by<Order>(self, order: Order) -> ThenOrderBy<Self, Order> where
Self: ThenOrderDsl<Order>,
fn then_order_by<Order>(self, order: Order) -> ThenOrderBy<Self, Order> where
Self: ThenOrderDsl<Order>,
Appends to the ORDER BY
clause of this SQL query.
Unlike .order
, this method will append rather than replace.
In other words,
.order_by(foo).order_by(bar)
is equivalent to .order_by(bar)
.
In contrast,
.order_by(foo).then_order_by(bar)
is equivalent to .order((foo, bar))
.
This method is only present on boxed queries.
Examples
diesel::insert_into(users)
.values(&vec![
name.eq("Saul"),
name.eq("Steve"),
name.eq("Stan"),
name.eq("Stan"),
])
.execute(&connection)?;
let data = users.select((name, id))
.order_by(name.asc())
.then_order_by(id.desc())
.load(&connection)?;
let expected_data = vec![
(String::from("Saul"), 3),
(String::from("Stan"), 6),
(String::from("Stan"), 5),
(String::from("Steve"), 4),
];
assert_eq!(expected_data, data);
Sets the limit clause of the query.
If there was already a limit clause, it will be overridden.
Example
// Using a limit
let limited = users.select(name)
.order(id)
.limit(1)
.load::<String>(&connection)?;
// Without a limit
let no_limit = users.select(name)
.order(id)
.load::<String>(&connection)?;
assert_eq!(vec!["Sean"], limited);
assert_eq!(vec!["Sean", "Bastien", "Pascal"], no_limit);
Sets the offset clause of the query.
If there was already a offset clause, it will be overridden.
Example
// Using an offset
let offset = users.select(name)
.order(id)
.limit(2)
.offset(1)
.load::<String>(&connection)?;
// No Offset
let no_offset = users.select(name)
.order(id)
.limit(2)
.load::<String>(&connection)?;
assert_eq!(vec!["Bastien", "Pascal"], offset);
assert_eq!(vec!["Sean", "Bastien"], no_offset);
fn for_update(self) -> ForUpdate<Self> where
Self: ForUpdateDsl,
fn for_update(self) -> ForUpdate<Self> where
Self: ForUpdateDsl,
Adds FOR UPDATE
to the end of the select statement.
This method is only available for MySQL and PostgreSQL. SQLite does not provide any form of row locking.
Additionally, .for_update
cannot be used on queries with a distinct
clause, group by clause, having clause, or any unions. Queries with
a FOR UPDATE
clause cannot be boxed.
Example
// Executes `SELECT * FROM users FOR UPDATE`
users.for_update().load(&connection)
fn for_no_key_update(self) -> ForNoKeyUpdate<Self> where
Self: LockingDsl<ForNoKeyUpdate>,
fn for_no_key_update(self) -> ForNoKeyUpdate<Self> where
Self: LockingDsl<ForNoKeyUpdate>,
Adds FOR NO KEY UPDATE
to the end of the select statement.
This method is only available for PostgreSQL. SQLite does not provide any form of row locking, and MySQL does not support anything finer than row-level locking.
Additionally, .for_no_key_update
cannot be used on queries with a distinct
clause, group by clause, having clause, or any unions. Queries with
a FOR NO KEY UPDATE
clause cannot be boxed.
Example
// Executes `SELECT * FROM users FOR NO KEY UPDATE`
users.for_no_key_update().load(&connection)
Adds FOR SHARE
to the end of the select statement.
This method is only available for MySQL and PostgreSQL. SQLite does not provide any form of row locking.
Additionally, .for_share
cannot be used on queries with a distinct
clause, group by clause, having clause, or any unions. Queries with
a FOR SHARE
clause cannot be boxed.
Example
// Executes `SELECT * FROM users FOR SHARE`
users.for_share().load(&connection)
Adds FOR KEY SHARE
to the end of the select statement.
This method is only available for PostgreSQL. SQLite does not provide any form of row locking, and MySQL does not support anything finer than row-level locking.
Additionally, .for_key_share
cannot be used on queries with a distinct
clause, group by clause, having clause, or any unions. Queries with
a FOR KEY SHARE
clause cannot be boxed.
Example
// Executes `SELECT * FROM users FOR KEY SHARE`
users.for_key_share().load(&connection)
fn skip_locked(self) -> SkipLocked<Self> where
Self: ModifyLockDsl<SkipLocked>,
fn skip_locked(self) -> SkipLocked<Self> where
Self: ModifyLockDsl<SkipLocked>,
Adds SKIP LOCKED
to the end of a FOR UPDATE
clause.
This modifier is only supported in PostgreSQL 9.5+ and MySQL 8+.
Example
// Executes `SELECT * FROM users FOR UPDATE SKIP LOCKED`
users.for_update().skip_locked().load(&connection)
fn no_wait(self) -> NoWait<Self> where
Self: ModifyLockDsl<NoWait>,
fn no_wait(self) -> NoWait<Self> where
Self: ModifyLockDsl<NoWait>,
Adds NOWAIT
to the end of a FOR UPDATE
clause.
This modifier is only supported in PostgreSQL 9.5+ and MySQL 8+.
Example
// Executes `SELECT * FROM users FOR UPDATE NOWAIT`
users.for_update().no_wait().load(&connection)
fn into_boxed<'a, DB>(self) -> IntoBoxed<'a, Self, DB> where
DB: Backend,
Self: BoxedDsl<'a, DB>,
fn into_boxed<'a, DB>(self) -> IntoBoxed<'a, Self, DB> where
DB: Backend,
Self: BoxedDsl<'a, DB>,
Boxes the pieces of a query into a single type.
This is useful for cases where you want to conditionally modify a query, but need the type to remain the same. The backend must be specified as part of this. It is not possible to box a query and have it be useable on multiple backends.
A boxed query will incur a minor performance penalty, as the query builder can no longer be inlined by the compiler. For most applications this cost will be minimal.
Example
let mut query = users::table.into_boxed();
if let Some(name) = params.get("name") {
query = query.filter(users::name.eq(name));
}
let users = query.load(&connection);
Diesel queries also have a similar problem to Iterator
, where
returning them from a function requires exposing the implementation of that
function. The helper_types
module exists to help with this,
but you might want to hide the return type or have it conditionally change.
Boxing can achieve both.
Example
fn users_by_name<'a>(name: &'a str) -> users::BoxedQuery<'a, DB> {
users::table.filter(users::name.eq(name)).into_boxed()
}
assert_eq!(Ok(1), users_by_name("Sean").select(users::id).first(&connection));
assert_eq!(Ok(2), users_by_name("Tess").select(users::id).first(&connection));
fn single_value(self) -> SingleValue<Self> where
Self: SingleValueDsl,
fn single_value(self) -> SingleValue<Self> where
Self: SingleValueDsl,
Wraps this select statement in parenthesis, allowing it to be used as an expression.
SQL allows queries such as foo = (SELECT ...)
, as long as the
subselect returns only a single column, and 0 or 1 rows. This method
indicates that you expect the query to only return a single value (this
will be enforced by adding LIMIT 1
).
The SQL type of this will always be Nullable
, as the query returns
NULL
if the table is empty or it otherwise returns 0 rows.
Example
insert_into(posts::table)
.values(posts::user_id.eq(1))
.execute(&connection)?;
let last_post = posts::table
.order(posts::id.desc());
let most_recently_active_user = users.select(name)
.filter(id.nullable().eq(last_post.select(posts::user_id).single_value()))
.first::<String>(&connection)?;
assert_eq!("Sean", most_recently_active_user);
fn nullable(self) -> NullableSelect<Self> where
Self: SelectNullableDsl,
fn nullable(self) -> NullableSelect<Self> where
Self: SelectNullableDsl,
Coerce the SQL type of the select clause to it’s nullable equivalent.
This is use full for writing queries that contain subselects on non null fields comparing them to nullable fields.
table! {
users {
id -> Integer,
name -> Text,
}
}
table! {
posts {
id -> Integer,
by_user -> Nullable<Text>,
}
}
posts::table.filter(
posts::by_user.eq_any(users::table.select(users::name).nullable())
).load(&connection)?;