1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#![deny(unsafe_code)]
//! Caching handle into the [ArcSwapAny].
//!
//! The [Cache] keeps a copy of the internal [Arc] for faster access.
//!
//! [Cache]: cache::Cache
//! [Arc]: std::sync::Arc

use std::ops::Deref;
use std::sync::atomic::Ordering;

use super::gen_lock::LockStorage;
use super::ref_cnt::RefCnt;
use super::ArcSwapAny;

/// Caching handle for [ArcSwapAny].
///
/// Instead of loading (or leasing or something) the [Arc] on every request from the shared
/// storage, this keeps another copy inside. Upon request it only cheaply revalidates it is up to
/// date. If it is, access is significantly faster. If it is stale, the full [load] is done and the
/// cache value is replaced. Under a read-heavy loads, the measured speedup are 10-25 times,
/// depending on the architecture.
///
/// There are, however, downsides:
///
/// * The handle needs to be kept around by the caller (usually, one per thread). This is fine if
///   there's one global instance, but starts being tricky with eg. data structures build from
///   them.
/// * As it keeps a copy of the [Arc] inside the cache, the old value may be kept alive for longer
///   period of time ‒ it is replaced by the new value on [load][Cache::load]. You may not want to
///   use this if dropping the old value in timely manner is important (possibly because of
///   releasing large amount of RAM or because of closing file handles).
///
/// # Examples
///
/// ```rust
/// # fn do_something<V>(_v: V) { }
/// use std::sync::Arc;
///
/// use arc_swap::ArcSwap;
/// use arc_swap::cache::Cache;
///
/// let shared = Arc::new(ArcSwap::from_pointee(42));
/// // Start 10 worker threads...
/// for _ in 0..10 {
///     let mut cache = Cache::new(Arc::clone(&shared));
///     std::thread::spawn(move || {
///         // Keep loading it like mad..
///         loop {
///             let value = cache.load();
///             do_something(value);
///         }
///     });
/// }
/// shared.store(Arc::new(12));
/// ```
///
/// [Arc]: std::sync::Arc
/// [load]: ArcSwapAny::load
#[derive(Clone, Debug)]
pub struct Cache<A, T> {
    arc_swap: A,
    cached: T,
}

impl<A, T, S> Cache<A, T>
where
    A: Deref<Target = ArcSwapAny<T, S>>,
    T: RefCnt,
    S: LockStorage,
{
    /// Creates a new caching handle.
    ///
    /// The parameter is something dereferencing into an [`ArcSwapAny`] (eg. either to [`ArcSwap`]
    /// or [`ArcSwapOption`]). That can be [`ArcSwapAny`] itself, but that's not very useful. But
    /// it also can be a reference to it or `Arc`, which makes it possible to share the
    /// [`ArcSwapAny`] with multiple caches or access it in non-cached way too.
    ///
    /// [`ArcSwapOption`]: ::ArcSwapOption
    /// [`ArcSwap`]: ::ArcSwap
    pub fn new(arc_swap: A) -> Self {
        let cached = arc_swap.load();
        Self { arc_swap, cached }
    }

    /// Gives access to the (possibly shared) cached [`ArcSwapAny`].
    pub fn arc_swap(&self) -> &A::Target {
        &self.arc_swap
    }

    /// Loads the currently held value.
    ///
    /// This first checks if the cached value is up to date. This check is very cheap.
    ///
    /// If it is up to date, the cached value is simply returned without additional costs. If it is
    /// outdated, a load is done on the underlying shared storage. The newly loaded value is then
    /// stored in the cache and returned.
    #[inline]
    pub fn load(&mut self) -> &T {
        self.revalidate();
        self.load_no_revalidate()
    }

    #[inline]
    fn load_no_revalidate(&self) -> &T {
        &self.cached
    }

    #[inline]
    fn revalidate(&mut self) {
        let cached_ptr = RefCnt::as_ptr(&self.cached);
        let shared_ptr = self.arc_swap.ptr.load(Ordering::Relaxed);
        if cached_ptr != shared_ptr {
            self.cached = self.arc_swap.load();
        }
    }
}

impl<A, T, S> From<A> for Cache<A, T>
where
    A: Deref<Target = ArcSwapAny<T, S>>,
    T: RefCnt,
    S: LockStorage,
{
    fn from(arc_swap: A) -> Self {
        Self::new(arc_swap)
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use super::*;
    use {ArcSwap, ArcSwapOption};

    #[test]
    fn cached_value() {
        let a = ArcSwap::from_pointee(42);
        let mut c1 = Cache::new(&a);
        let mut c2 = Cache::new(&a);

        assert_eq!(42, **c1.load());
        assert_eq!(42, **c2.load());

        a.store(Arc::new(43));
        assert_eq!(42, **c1.load_no_revalidate());
        assert_eq!(43, **c1.load());
    }

    #[test]
    fn cached_through_arc() {
        let a = Arc::new(ArcSwap::from_pointee(42));
        let mut c = Cache::new(Arc::clone(&a));
        assert_eq!(42, **c.load());
        a.store(Arc::new(0));
        drop(a); // A is just one handle, the ArcSwap is kept alive by the cache.
    }

    #[test]
    fn cache_option() {
        let a = ArcSwapOption::from_pointee(42);
        let mut c = Cache::new(&a);

        assert_eq!(42, **c.load().as_ref().unwrap());
        a.store(None);
        assert!(c.load().is_none());
    }
}