1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#![deny(unsafe_code)]
//! Caching handle into the [ArcSwapAny].
//!
//! The [Cache] keeps a copy of the internal [Arc] for faster access.
//!
//! [Cache]: cache::Cache
//! [Arc]: std::sync::Arc
use std::ops::Deref;
use std::sync::atomic::Ordering;
use super::gen_lock::LockStorage;
use super::ref_cnt::RefCnt;
use super::ArcSwapAny;
/// Caching handle for [ArcSwapAny].
///
/// Instead of loading (or leasing or something) the [Arc] on every request from the shared
/// storage, this keeps another copy inside. Upon request it only cheaply revalidates it is up to
/// date. If it is, access is significantly faster. If it is stale, the full [load] is done and the
/// cache value is replaced. Under a read-heavy loads, the measured speedup are 10-25 times,
/// depending on the architecture.
///
/// There are, however, downsides:
///
/// * The handle needs to be kept around by the caller (usually, one per thread). This is fine if
/// there's one global instance, but starts being tricky with eg. data structures build from
/// them.
/// * As it keeps a copy of the [Arc] inside the cache, the old value may be kept alive for longer
/// period of time ‒ it is replaced by the new value on [load][Cache::load]. You may not want to
/// use this if dropping the old value in timely manner is important (possibly because of
/// releasing large amount of RAM or because of closing file handles).
///
/// # Examples
///
/// ```rust
/// # fn do_something<V>(_v: V) { }
/// use std::sync::Arc;
///
/// use arc_swap::ArcSwap;
/// use arc_swap::cache::Cache;
///
/// let shared = Arc::new(ArcSwap::from_pointee(42));
/// // Start 10 worker threads...
/// for _ in 0..10 {
/// let mut cache = Cache::new(Arc::clone(&shared));
/// std::thread::spawn(move || {
/// // Keep loading it like mad..
/// loop {
/// let value = cache.load();
/// do_something(value);
/// }
/// });
/// }
/// shared.store(Arc::new(12));
/// ```
///
/// [Arc]: std::sync::Arc
/// [load]: ArcSwapAny::load
#[derive(Clone, Debug)]
pub struct Cache<A, T> {
arc_swap: A,
cached: T,
}
impl<A, T, S> Cache<A, T>
where
A: Deref<Target = ArcSwapAny<T, S>>,
T: RefCnt,
S: LockStorage,
{
/// Creates a new caching handle.
///
/// The parameter is something dereferencing into an [`ArcSwapAny`] (eg. either to [`ArcSwap`]
/// or [`ArcSwapOption`]). That can be [`ArcSwapAny`] itself, but that's not very useful. But
/// it also can be a reference to it or `Arc`, which makes it possible to share the
/// [`ArcSwapAny`] with multiple caches or access it in non-cached way too.
///
/// [`ArcSwapOption`]: ::ArcSwapOption
/// [`ArcSwap`]: ::ArcSwap
pub fn new(arc_swap: A) -> Self {
let cached = arc_swap.load();
Self { arc_swap, cached }
}
/// Gives access to the (possibly shared) cached [`ArcSwapAny`].
pub fn arc_swap(&self) -> &A::Target {
&self.arc_swap
}
/// Loads the currently held value.
///
/// This first checks if the cached value is up to date. This check is very cheap.
///
/// If it is up to date, the cached value is simply returned without additional costs. If it is
/// outdated, a load is done on the underlying shared storage. The newly loaded value is then
/// stored in the cache and returned.
#[inline]
pub fn load(&mut self) -> &T {
self.revalidate();
self.load_no_revalidate()
}
#[inline]
fn load_no_revalidate(&self) -> &T {
&self.cached
}
#[inline]
fn revalidate(&mut self) {
let cached_ptr = RefCnt::as_ptr(&self.cached);
let shared_ptr = self.arc_swap.ptr.load(Ordering::Relaxed);
if cached_ptr != shared_ptr {
self.cached = self.arc_swap.load();
}
}
}
impl<A, T, S> From<A> for Cache<A, T>
where
A: Deref<Target = ArcSwapAny<T, S>>,
T: RefCnt,
S: LockStorage,
{
fn from(arc_swap: A) -> Self {
Self::new(arc_swap)
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use super::*;
use {ArcSwap, ArcSwapOption};
#[test]
fn cached_value() {
let a = ArcSwap::from_pointee(42);
let mut c1 = Cache::new(&a);
let mut c2 = Cache::new(&a);
assert_eq!(42, **c1.load());
assert_eq!(42, **c2.load());
a.store(Arc::new(43));
assert_eq!(42, **c1.load_no_revalidate());
assert_eq!(43, **c1.load());
}
#[test]
fn cached_through_arc() {
let a = Arc::new(ArcSwap::from_pointee(42));
let mut c = Cache::new(Arc::clone(&a));
assert_eq!(42, **c.load());
a.store(Arc::new(0));
drop(a); // A is just one handle, the ArcSwap is kept alive by the cache.
}
#[test]
fn cache_option() {
let a = ArcSwapOption::from_pointee(42);
let mut c = Cache::new(&a);
assert_eq!(42, **c.load().as_ref().unwrap());
a.store(None);
assert!(c.load().is_none());
}
}