1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
//! Text-specific parsers and utilities.
//!
//! *“Ford!" he said, "there's an infinite number of monkeys outside who want to talk to us about this script for
//! Hamlet they've worked out.”*
//!
//! The parsers in this module are generic over both Unicode ([`char`]) and ASCII ([`u8`]) characters. Most parsers take
//! a type parameter, `C`, that can be either [`u8`] or [`char`] in order to handle either case.
//!
//! The [`TextParser`] trait is an extension on top of the main [`Parser`] trait that adds combinators unique to the
//! parsing of text.
use super::*;
use core::iter::FromIterator;
/// The type of a parser that accepts (and ignores) any number of whitespace characters.
pub type Padding<I, E> = Custom<fn(&mut StreamOf<I, E>) -> PResult<I, (), E>, E>;
/// The type of a parser that accepts (and ignores) any number of whitespace characters before or after another
/// pattern.
// pub type Padded<P, I, O> = ThenIgnore<
// IgnoreThen<Padding<I, <P as Parser<I, O>>::Error>, P, (), O>,
// Padding<I, <P as Parser<I, O>>::Error>,
// O,
// (),
// >;
/// A parser that accepts (and ignores) any number of whitespace characters before or after another pattern.
#[must_use]
#[derive(Copy, Clone)]
pub struct Padded<A>(A);
impl<C: Character, O, A: Parser<C, O, Error = E>, E: Error<C>> Parser<C, O> for Padded<A> {
type Error = E;
#[inline]
fn parse_inner<D: Debugger>(
&self,
debugger: &mut D,
stream: &mut StreamOf<C, E>,
) -> PResult<C, O, E> {
while stream.skip_if(|c| c.is_whitespace()) {}
match self.0.parse_inner(debugger, stream) {
(a_errors, Ok((a_out, a_alt))) => {
while stream.skip_if(|c| c.is_whitespace()) {}
(a_errors, Ok((a_out, a_alt)))
}
(a_errors, Err(err)) => (a_errors, Err(err)),
}
}
#[inline]
fn parse_inner_verbose(&self, d: &mut Verbose, s: &mut StreamOf<C, E>) -> PResult<C, O, E> {
#[allow(deprecated)]
self.parse_inner(d, s)
}
#[inline]
fn parse_inner_silent(&self, d: &mut Silent, s: &mut StreamOf<C, E>) -> PResult<C, O, E> {
#[allow(deprecated)]
self.parse_inner(d, s)
}
}
mod private {
pub trait Sealed {}
impl Sealed for u8 {}
impl Sealed for char {}
}
/// A trait implemented by textual character types (currently, [`u8`] and [`char`]).
///
/// Avoid implementing this trait yourself if you can: it's *very* likely to be expanded in future versions!
pub trait Character: private::Sealed + Copy + PartialEq {
/// The default unsized [`str`]-like type of a linear sequence of this character.
///
/// For [`char`], this is [`str`]. For [`u8`], this is [`[u8]`].
type Str: ?Sized + PartialEq;
/// The default type that this character collects into.
///
/// For [`char`], this is [`String`]. For [`u8`], this is [`Vec<u8>`].
type Collection: Chain<Self> + FromIterator<Self> + AsRef<Self::Str> + 'static;
/// Convert the given ASCII character to this character type.
fn from_ascii(c: u8) -> Self;
/// Returns true if the character is canonically considered to be inline whitespace (i.e: not part of a newline).
fn is_inline_whitespace(&self) -> bool;
/// Returns true if the character is canonically considered to be whitespace.
fn is_whitespace(&self) -> bool;
/// Return the '0' digit of the character.
fn digit_zero() -> Self;
/// Returns true if the character is canonically considered to be a numeric digit.
fn is_digit(&self, radix: u32) -> bool;
/// Returns this character as a [`char`].
fn to_char(&self) -> char;
}
impl Character for u8 {
type Str = [u8];
type Collection = Vec<u8>;
fn from_ascii(c: u8) -> Self {
c
}
fn is_inline_whitespace(&self) -> bool {
*self == b' ' || *self == b'\t'
}
fn is_whitespace(&self) -> bool {
self.is_ascii_whitespace()
}
fn digit_zero() -> Self {
b'0'
}
fn is_digit(&self, radix: u32) -> bool {
(*self as char).is_digit(radix)
}
fn to_char(&self) -> char {
*self as char
}
}
impl Character for char {
type Str = str;
type Collection = String;
fn from_ascii(c: u8) -> Self {
c as char
}
fn is_inline_whitespace(&self) -> bool {
*self == ' ' || *self == '\t'
}
fn is_whitespace(&self) -> bool {
char::is_whitespace(*self)
}
fn digit_zero() -> Self {
'0'
}
fn is_digit(&self, radix: u32) -> bool {
char::is_digit(*self, radix)
}
fn to_char(&self) -> char {
*self
}
}
/// A trait containing text-specific functionality that extends the [`Parser`] trait.
pub trait TextParser<I: Character, O>: Parser<I, O> {
/// Parse a pattern, ignoring any amount of whitespace both before and after the pattern.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let ident = text::ident::<_, Simple<char>>().padded();
///
/// // A pattern with no whitespace surrounding it is accepted
/// assert_eq!(ident.parse("hello"), Ok("hello".to_string()));
/// // A pattern with arbitrary whitespace surrounding it is also accepted
/// assert_eq!(ident.parse(" \t \n \t world \t "), Ok("world".to_string()));
/// ```
fn padded(self) -> Padded<Self>
where
Self: Sized,
{
Padded(self)
// whitespace().ignore_then(self).then_ignore(whitespace())
}
}
impl<I: Character, O, P: Parser<I, O>> TextParser<I, O> for P {}
/// A parser that accepts (and ignores) any number of whitespace characters.
///
/// This parser is a `Parser::Repeated` and so methods such as `at_least()` can be called on it.
///
/// The output type of this parser is `Vec<()>`.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let whitespace = text::whitespace::<_, Simple<char>>();
///
/// // Any amount of whitespace is parsed...
/// assert_eq!(whitespace.parse("\t \n \r "), Ok(vec![(), (), (), (), (), (), ()]));
/// // ...including none at all!
/// assert_eq!(whitespace.parse(""), Ok(vec![]));
/// ```
pub fn whitespace<'a, C: Character + 'a, E: Error<C> + 'a>(
) -> Repeated<impl Parser<C, (), Error = E> + Copy + Clone + 'a> {
filter(|c: &C| c.is_whitespace()).ignored().repeated()
}
/// A parser that accepts (and ignores) any newline characters or character sequences.
///
/// The output type of this parser is `()`.
///
/// This parser is quite extensive, recognising:
///
/// - Line feed (`\n`)
/// - Carriage return (`\r`)
/// - Carriage return + line feed (`\r\n`)
/// - Vertical tab (`\x0B`)
/// - Form feed (`\x0C`)
/// - Next line (`\u{0085}`)
/// - Line separator (`\u{2028}`)
/// - Paragraph separator (`\u{2029}`)
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let newline = text::newline::<char, Simple<char>>()
/// .then_ignore(end());
///
/// assert_eq!(newline.parse("\n"), Ok(()));
/// assert_eq!(newline.parse("\r"), Ok(()));
/// assert_eq!(newline.parse("\r\n"), Ok(()));
/// assert_eq!(newline.parse("\x0B"), Ok(()));
/// assert_eq!(newline.parse("\x0C"), Ok(()));
/// assert_eq!(newline.parse("\u{0085}"), Ok(()));
/// assert_eq!(newline.parse("\u{2028}"), Ok(()));
/// assert_eq!(newline.parse("\u{2029}"), Ok(()));
/// ```
#[must_use]
pub fn newline<'a, C: Character + 'a, E: Error<C> + 'a>(
) -> impl Parser<C, (), Error = E> + Copy + Clone + 'a {
just(C::from_ascii(b'\r'))
.or_not()
.ignore_then(just(C::from_ascii(b'\n')))
.or(filter(|c: &C| {
[
'\r', // Carriage return
'\x0B', // Vertical tab
'\x0C', // Form feed
'\u{0085}', // Next line
'\u{2028}', // Line separator
'\u{2029}', // Paragraph separator
]
.contains(&c.to_char())
}))
.ignored()
}
/// A parser that accepts one or more ASCII digits.
///
/// The output type of this parser is [`Character::Collection`] (i.e: [`String`] when `C` is [`char`], and [`Vec<u8>`]
/// when `C` is [`u8`]).
///
/// The `radix` parameter functions identically to [`char::is_digit`]. If in doubt, choose `10`.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let digits = text::digits::<_, Simple<char>>(10);
///
/// assert_eq!(digits.parse("0"), Ok("0".to_string()));
/// assert_eq!(digits.parse("1"), Ok("1".to_string()));
/// assert_eq!(digits.parse("01234"), Ok("01234".to_string()));
/// assert_eq!(digits.parse("98345"), Ok("98345".to_string()));
/// // A string of zeroes is still valid. Use `int` if this is not desirable.
/// assert_eq!(digits.parse("0000"), Ok("0000".to_string()));
/// assert!(digits.parse("").is_err());
/// ```
#[must_use]
pub fn digits<C: Character, E: Error<C>>(
radix: u32,
) -> impl Parser<C, C::Collection, Error = E> + Copy + Clone {
filter(move |c: &C| c.is_digit(radix))
.repeated()
.at_least(1)
.collect()
}
/// A parser that accepts a non-negative integer.
///
/// An integer is defined as a non-empty sequence of ASCII digits, where the first digit is non-zero or the sequence
/// has length one.
///
/// The output type of this parser is [`Character::Collection`] (i.e: [`String`] when `C` is [`char`], and [`Vec<u8>`]
/// when `C` is [`u8`]).
///
/// The `radix` parameter functions identically to [`char::is_digit`]. If in doubt, choose `10`.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let dec = text::int::<_, Simple<char>>(10)
/// .then_ignore(end());
///
/// assert_eq!(dec.parse("0"), Ok("0".to_string()));
/// assert_eq!(dec.parse("1"), Ok("1".to_string()));
/// assert_eq!(dec.parse("1452"), Ok("1452".to_string()));
/// // No leading zeroes are permitted!
/// assert!(dec.parse("04").is_err());
///
/// let hex = text::int::<_, Simple<char>>(16)
/// .then_ignore(end());
///
/// assert_eq!(hex.parse("2A"), Ok("2A".to_string()));
/// assert_eq!(hex.parse("d"), Ok("d".to_string()));
/// assert_eq!(hex.parse("b4"), Ok("b4".to_string()));
/// assert!(hex.parse("0B").is_err());
/// ```
#[must_use]
pub fn int<C: Character, E: Error<C>>(
radix: u32,
) -> impl Parser<C, C::Collection, Error = E> + Copy + Clone {
filter(move |c: &C| c.is_digit(radix) && c != &C::digit_zero())
.map(Some)
.chain::<C, Vec<_>, _>(filter(move |c: &C| c.is_digit(radix)).repeated())
.collect()
.or(just(C::digit_zero()).map(|c| core::iter::once(c).collect()))
}
/// A parser that accepts a C-style identifier.
///
/// The output type of this parser is [`Character::Collection`] (i.e: [`String`] when `C` is [`char`], and [`Vec<u8>`]
/// when `C` is [`u8`]).
///
/// An identifier is defined as an ASCII alphabetic character or an underscore followed by any number of alphanumeric
/// characters or underscores. The regex pattern for it is `[a-zA-Z_][a-zA-Z0-9_]*`.
#[must_use]
pub fn ident<C: Character, E: Error<C>>() -> impl Parser<C, C::Collection, Error = E> + Copy + Clone
{
filter(|c: &C| c.to_char().is_ascii_alphabetic() || c.to_char() == '_')
.map(Some)
.chain::<C, Vec<_>, _>(
filter(|c: &C| c.to_char().is_ascii_alphanumeric() || c.to_char() == '_').repeated(),
)
.collect()
}
/// Like [`ident`], but only accepts an exact identifier while ignoring trailing identifier characters.
///
/// The output type of this parser is `()`.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let def = text::keyword::<_, _, Simple<char>>("def");
///
/// // Exactly 'def' was found
/// assert_eq!(def.parse("def"), Ok(()));
/// // Exactly 'def' was found, with non-identifier trailing characters
/// assert_eq!(def.parse("def(foo, bar)"), Ok(()));
/// // 'def' was found, but only as part of a larger identifier, so this fails to parse
/// assert!(def.parse("define").is_err());
/// ```
#[must_use]
pub fn keyword<'a, C: Character + 'a, S: AsRef<C::Str> + 'a + Clone, E: Error<C> + 'a>(
keyword: S,
) -> impl Parser<C, (), Error = E> + Clone + 'a {
// TODO: use .filter(...), improve error messages
ident().try_map(move |s: C::Collection, span| {
if s.as_ref() == keyword.as_ref() {
Ok(())
} else {
Err(E::expected_input_found(span, None, None))
}
})
}
/// A parser that consumes text and generates tokens using semantic whitespace rules and the given token parser.
///
/// Also required is a function that collects a [`Vec`] of tokens into a whitespace-indicated token tree.
#[must_use]
pub fn semantic_indentation<'a, C, Tok, T, F, E: Error<C> + 'a>(
token: T,
make_group: F,
) -> impl Parser<C, Vec<Tok>, Error = E> + Clone + 'a
where
C: Character + 'a,
Tok: 'a,
T: Parser<C, Tok, Error = E> + Clone + 'a,
F: Fn(Vec<Tok>, E::Span) -> Tok + Clone + 'a,
{
let line_ws = filter(|c: &C| c.is_inline_whitespace());
let line = token.padded_by(line_ws.ignored().repeated()).repeated();
let lines = line_ws
.repeated()
.then(line.map_with_span(|line, span| (line, span)))
.separated_by(newline())
.padded();
lines.map(move |lines| {
fn collapse<C, Tok, F, S>(
mut tree: Vec<(Vec<C>, Vec<Tok>, Option<S>)>,
make_group: &F,
) -> Option<Tok>
where
F: Fn(Vec<Tok>, S) -> Tok,
{
while let Some((_, tts, line_span)) = tree.pop() {
let tt = make_group(tts, line_span?);
if let Some(last) = tree.last_mut() {
last.1.push(tt);
} else {
return Some(tt);
}
}
None
}
let mut nesting = vec![(Vec::new(), Vec::new(), None)];
for (indent, (mut line, line_span)) in lines {
let mut indent = indent.as_slice();
let mut i = 0;
while let Some(tail) = nesting
.get(i)
.and_then(|(n, _, _)| indent.strip_prefix(n.as_slice()))
{
indent = tail;
i += 1;
}
if let Some(tail) = collapse(nesting.split_off(i), &make_group) {
nesting.last_mut().unwrap().1.push(tail);
}
if !indent.is_empty() {
nesting.push((indent.to_vec(), line, Some(line_span)));
} else {
nesting.last_mut().unwrap().1.append(&mut line);
}
}
nesting.remove(0).1
})
}