pub struct NaiveTime { /* private fields */ }
Expand description
ISO 8601 time without timezone. Allows for the nanosecond precision and optional leap second representation.
Leap Second Handling
Since 1960s, the manmade atomic clock has been so accurate that it is much more accurate than Earth’s own motion. It became desirable to define the civil time in terms of the atomic clock, but that risks the desynchronization of the civil time from Earth. To account for this, the designers of the Coordinated Universal Time (UTC) made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. When the mean solar day is longer than the ideal (86,400 seconds), the error slowly accumulates and it is necessary to add a leap second to slow the UTC down a bit. (We may also remove a second to speed the UTC up a bit, but it never happened.) The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC.
Fast forward to the 21st century, we have seen 26 leap seconds from January 1972 to December 2015. Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. But those 26 seconds, and possibly more in the future, are never predictable, and whether to add a leap second or not is known only before 6 months. Internet-based clocks (via NTP) do account for known leap seconds, but the system API normally doesn’t (and often can’t, with no network connection) and there is no reliable way to retrieve leap second information.
Chrono does not try to accurately implement leap seconds; it is impossible. Rather, it allows for leap seconds but behaves as if there are no other leap seconds. Various operations will ignore any possible leap second(s) except when any of the operands were actually leap seconds.
If you cannot tolerate this behavior,
you must use a separate TimeZone
for the International Atomic Time (TAI).
TAI is like UTC but has no leap seconds, and thus slightly differs from UTC.
Chrono does not yet provide such implementation, but it is planned.
Representing Leap Seconds
The leap second is indicated via fractional seconds more than 1 second. This makes possible to treat a leap second as the prior non-leap second if you don’t care about sub-second accuracy. You should use the proper formatting to get the raw leap second.
All methods accepting fractional seconds will accept such values.
use chrono::{NaiveDate, NaiveTime, Utc, TimeZone};
let t = NaiveTime::from_hms_milli(8, 59, 59, 1_000);
let dt1 = NaiveDate::from_ymd(2015, 7, 1).and_hms_micro(8, 59, 59, 1_000_000);
let dt2 = Utc.ymd(2015, 6, 30).and_hms_nano(23, 59, 59, 1_000_000_000);
Note that the leap second can happen anytime given an appropriate time zone; 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed. Practically speaking, though, by the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.
Date And Time Arithmetics
As a concrete example, let’s assume that 03:00:60
and 04:00:60
are leap seconds.
In reality, of course, leap seconds are separated by at least 6 months.
We will also use some intuitive concise notations for the explanation.
Time + Duration
(short for NaiveTime::overflowing_add_signed
):
03:00:00 + 1s = 03:00:01
.03:00:59 + 60s = 03:02:00
.03:00:59 + 1s = 03:01:00
.03:00:60 + 1s = 03:01:00
. Note that the sum is identical to the previous.03:00:60 + 60s = 03:01:59
.03:00:60 + 61s = 03:02:00
.03:00:60.1 + 0.8s = 03:00:60.9
.
Time - Duration
(short for NaiveTime::overflowing_sub_signed
):
03:00:00 - 1s = 02:59:59
.03:01:00 - 1s = 03:00:59
.03:01:00 - 60s = 03:00:00
.03:00:60 - 60s = 03:00:00
. Note that the result is identical to the previous.03:00:60.7 - 0.4s = 03:00:60.3
.03:00:60.7 - 0.9s = 03:00:59.8
.
Time - Time
(short for NaiveTime::signed_duration_since
):
04:00:00 - 03:00:00 = 3600s
.03:01:00 - 03:00:00 = 60s
.03:00:60 - 03:00:00 = 60s
. Note that the difference is identical to the previous.03:00:60.6 - 03:00:59.4 = 1.2s
.03:01:00 - 03:00:59.8 = 0.2s
.03:01:00 - 03:00:60.5 = 0.5s
. Note that the difference is larger than the previous, even though the leap second clearly follows the previous whole second.04:00:60.9 - 03:00:60.1 = (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) = 60.9s + 3540s + 0.9s = 3601.8s
.
In general,
-
Time + Duration
unconditionally equals toDuration + Time
. -
Time - Duration
unconditionally equals toTime + (-Duration)
. -
Time1 - Time2
unconditionally equals to-(Time2 - Time1)
. -
Associativity does not generally hold, because
(Time + Duration1) - Duration2
no longer equals toTime + (Duration1 - Duration2)
for two positive durations.-
As a special case,
(Time + Duration) - Duration
also does not equal toTime
. -
If you can assume that all durations have the same sign, however, then the associativity holds:
(Time + Duration1) + Duration2
equals toTime + (Duration1 + Duration2)
for two positive durations.
-
Reading And Writing Leap Seconds
The “typical” leap seconds on the minute boundary are correctly handled both in the formatting and parsing. The leap second in the human-readable representation will be represented as the second part being 60, as required by ISO 8601.
use chrono::{Utc, TimeZone};
let dt = Utc.ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_000);
assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60Z");
There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono. They are allowed for the sake of completeness and consistency; there were several “exotic” time zone offsets with fractional minutes prior to UTC after all. For such cases the human-readable representation is ambiguous and would be read back to the next non-leap second.
use chrono::{DateTime, Utc, TimeZone};
let dt = Utc.ymd(2015, 6, 30).and_hms_milli(23, 56, 4, 1_000);
assert_eq!(format!("{:?}", dt), "2015-06-30T23:56:05Z");
let dt = Utc.ymd(2015, 6, 30).and_hms(23, 56, 5);
assert_eq!(format!("{:?}", dt), "2015-06-30T23:56:05Z");
assert_eq!(DateTime::parse_from_rfc3339("2015-06-30T23:56:05Z").unwrap(), dt);
Since Chrono alone cannot determine any existence of leap seconds, there is absolutely no guarantee that the leap second read has actually happened.
Implementations
sourceimpl NaiveTime
impl NaiveTime
sourcepub fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime
pub fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*
methods with a subsecond parameter instead.
Panics on invalid hour, minute and/or second.
Example
use chrono::{NaiveTime, Timelike};
let t = NaiveTime::from_hms(23, 56, 4);
assert_eq!(t.hour(), 23);
assert_eq!(t.minute(), 56);
assert_eq!(t.second(), 4);
assert_eq!(t.nanosecond(), 0);
sourcepub fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>
pub fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*_opt
methods with a subsecond parameter instead.
Returns None
on invalid hour, minute and/or second.
Example
use chrono::NaiveTime;
let from_hms_opt = NaiveTime::from_hms_opt;
assert!(from_hms_opt(0, 0, 0).is_some());
assert!(from_hms_opt(23, 59, 59).is_some());
assert!(from_hms_opt(24, 0, 0).is_none());
assert!(from_hms_opt(23, 60, 0).is_none());
assert!(from_hms_opt(23, 59, 60).is_none());
sourcepub fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime
pub fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or millisecond.
Example
use chrono::{NaiveTime, Timelike};
let t = NaiveTime::from_hms_milli(23, 56, 4, 12);
assert_eq!(t.hour(), 23);
assert_eq!(t.minute(), 56);
assert_eq!(t.second(), 4);
assert_eq!(t.nanosecond(), 12_000_000);
sourcepub fn from_hms_milli_opt(
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> Option<NaiveTime>
pub fn from_hms_milli_opt(
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or millisecond.
Example
use chrono::NaiveTime;
let from_hmsm_opt = NaiveTime::from_hms_milli_opt;
assert!(from_hmsm_opt(0, 0, 0, 0).is_some());
assert!(from_hmsm_opt(23, 59, 59, 999).is_some());
assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59
assert!(from_hmsm_opt(24, 0, 0, 0).is_none());
assert!(from_hmsm_opt(23, 60, 0, 0).is_none());
assert!(from_hmsm_opt(23, 59, 60, 0).is_none());
assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none());
sourcepub fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime
pub fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or microsecond.
Example
use chrono::{NaiveTime, Timelike};
let t = NaiveTime::from_hms_micro(23, 56, 4, 12_345);
assert_eq!(t.hour(), 23);
assert_eq!(t.minute(), 56);
assert_eq!(t.second(), 4);
assert_eq!(t.nanosecond(), 12_345_000);
sourcepub fn from_hms_micro_opt(
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> Option<NaiveTime>
pub fn from_hms_micro_opt(
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or microsecond.
Example
use chrono::NaiveTime;
let from_hmsu_opt = NaiveTime::from_hms_micro_opt;
assert!(from_hmsu_opt(0, 0, 0, 0).is_some());
assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some());
assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59
assert!(from_hmsu_opt(24, 0, 0, 0).is_none());
assert!(from_hmsu_opt(23, 60, 0, 0).is_none());
assert!(from_hmsu_opt(23, 59, 60, 0).is_none());
assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none());
sourcepub fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime
pub fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike};
let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!(t.hour(), 23);
assert_eq!(t.minute(), 56);
assert_eq!(t.second(), 4);
assert_eq!(t.nanosecond(), 12_345_678);
sourcepub fn from_hms_nano_opt(
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> Option<NaiveTime>
pub fn from_hms_nano_opt(
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or nanosecond.
Example
use chrono::NaiveTime;
let from_hmsn_opt = NaiveTime::from_hms_nano_opt;
assert!(from_hmsn_opt(0, 0, 0, 0).is_some());
assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some());
assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59
assert!(from_hmsn_opt(24, 0, 0, 0).is_none());
assert!(from_hmsn_opt(23, 60, 0, 0).is_none());
assert!(from_hmsn_opt(23, 59, 60, 0).is_none());
assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none());
sourcepub fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime
pub fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid number of seconds and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike};
let t = NaiveTime::from_num_seconds_from_midnight(86164, 12_345_678);
assert_eq!(t.hour(), 23);
assert_eq!(t.minute(), 56);
assert_eq!(t.second(), 4);
assert_eq!(t.nanosecond(), 12_345_678);
sourcepub fn from_num_seconds_from_midnight_opt(
secs: u32,
nano: u32
) -> Option<NaiveTime>
pub fn from_num_seconds_from_midnight_opt(
secs: u32,
nano: u32
) -> Option<NaiveTime>
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid number of seconds and/or nanosecond.
Example
use chrono::NaiveTime;
let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt;
assert!(from_nsecs_opt(0, 0).is_some());
assert!(from_nsecs_opt(86399, 999_999_999).is_some());
assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59
assert!(from_nsecs_opt(86_400, 0).is_none());
assert!(from_nsecs_opt(86399, 2_000_000_000).is_none());
sourcepub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>
Parses a string with the specified format string and returns a new NaiveTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::NaiveTime;
let parse_from_str = NaiveTime::parse_from_str;
assert_eq!(parse_from_str("23:56:04", "%H:%M:%S"),
Ok(NaiveTime::from_hms(23, 56, 4)));
assert_eq!(parse_from_str("pm012345.6789", "%p%I%M%S%.f"),
Ok(NaiveTime::from_hms_micro(13, 23, 45, 678_900)));
Date and offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
Ok(NaiveTime::from_hms(12, 34, 56)));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(parse_from_str("08:59:60.123", "%H:%M:%S%.f"),
Ok(NaiveTime::from_hms_milli(8, 59, 59, 1_123)));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("7:15", "%H:%M"),
Ok(NaiveTime::from_hms(7, 15, 0)));
assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
assert!(parse_from_str("12", "%H").is_err());
assert!(parse_from_str("17:60", "%H:%M").is_err());
assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it’s an error.
Here %H
is for 24-hour clocks, unlike %I
,
and thus can be independently determined without AM/PM.
assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err());
sourcepub fn overflowing_add_signed(&self, rhs: OldDuration) -> (NaiveTime, i64)
pub fn overflowing_add_signed(&self, rhs: OldDuration) -> (NaiveTime, i64)
Adds given Duration
to the current time,
and also returns the number of seconds
in the integral number of days ignored from the addition.
(We cannot return Duration
because it is subject to overflow or underflow.)
Example
use chrono::{Duration, NaiveTime};
let from_hms = NaiveTime::from_hms;
assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(11)),
(from_hms(14, 4, 5), 0));
assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(23)),
(from_hms(2, 4, 5), 86_400));
assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(-7)),
(from_hms(20, 4, 5), -86_400));
sourcepub fn overflowing_sub_signed(&self, rhs: OldDuration) -> (NaiveTime, i64)
pub fn overflowing_sub_signed(&self, rhs: OldDuration) -> (NaiveTime, i64)
Subtracts given Duration
from the current time,
and also returns the number of seconds
in the integral number of days ignored from the subtraction.
(We cannot return Duration
because it is subject to overflow or underflow.)
Example
use chrono::{Duration, NaiveTime};
let from_hms = NaiveTime::from_hms;
assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(2)),
(from_hms(1, 4, 5), 0));
assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(17)),
(from_hms(10, 4, 5), 86_400));
assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(-22)),
(from_hms(1, 4, 5), -86_400));
sourcepub fn signed_duration_since(self, rhs: NaiveTime) -> OldDuration
pub fn signed_duration_since(self, rhs: NaiveTime) -> OldDuration
Subtracts another NaiveTime
from the current time.
Returns a Duration
within +/- 1 day.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
let since = NaiveTime::signed_duration_since;
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)),
Duration::zero());
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)),
Duration::milliseconds(25));
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)),
Duration::milliseconds(975));
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)),
Duration::seconds(7));
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)),
Duration::seconds(5 * 60));
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)),
Duration::seconds(3 * 3600));
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)),
Duration::seconds(-3600));
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)),
Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)),
Duration::seconds(1));
assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)),
Duration::milliseconds(1500));
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)),
Duration::seconds(60));
assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)),
Duration::seconds(1));
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)),
Duration::seconds(61));
sourcepub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
Formats the time with the specified formatting items.
Otherwise it is the same as the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveTime;
use chrono::format::strftime::StrftimeItems;
let fmt = StrftimeItems::new("%H:%M:%S");
let t = NaiveTime::from_hms(23, 56, 4);
assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04");
assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04");
sourcepub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
Formats the time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveTime;
let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345");
assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04");
assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345");
assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM");
Trait Implementations
sourceimpl Add<Duration> for NaiveTime
impl Add<Duration> for NaiveTime
An addition of Duration
to NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(1), from_hmsm(3, 5, 8, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(60 + 4), from_hmsm(3, 6, 11, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::milliseconds(80), from_hmsm(3, 5, 7, 80));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(280), from_hmsm(3, 5, 8, 230));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(-980), from_hmsm(3, 5, 6, 970));
The addition wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), from_hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), from_hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), from_hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), from_hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1), from_hmsm(3, 5, 59, 300));
sourceimpl Add<FixedOffset> for NaiveTime
impl Add<FixedOffset> for NaiveTime
sourceimpl AddAssign<Duration> for NaiveTime
impl AddAssign<Duration> for NaiveTime
sourcefn add_assign(&mut self, rhs: OldDuration)
fn add_assign(&mut self, rhs: OldDuration)
Performs the +=
operation. Read more
sourceimpl Debug for NaiveTime
impl Debug for NaiveTime
The Debug
output of the naive time t
is the same as
t.format("%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveTime;
assert_eq!(format!("{:?}", NaiveTime::from_hms(23, 56, 4)), "23:56:04");
assert_eq!(format!("{:?}", NaiveTime::from_hms_milli(23, 56, 4, 12)), "23:56:04.012");
assert_eq!(format!("{:?}", NaiveTime::from_hms_micro(23, 56, 4, 1234)), "23:56:04.001234");
assert_eq!(format!("{:?}", NaiveTime::from_hms_nano(23, 56, 4, 123456)), "23:56:04.000123456");
Leap seconds may also be used.
assert_eq!(format!("{:?}", NaiveTime::from_hms_milli(6, 59, 59, 1_500)), "06:59:60.500");
sourceimpl<'de> Deserialize<'de> for NaiveTime
impl<'de> Deserialize<'de> for NaiveTime
sourcefn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where
D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
sourceimpl Display for NaiveTime
impl Display for NaiveTime
The Display
output of the naive time t
is the same as
t.format("%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveTime;
assert_eq!(format!("{}", NaiveTime::from_hms(23, 56, 4)), "23:56:04");
assert_eq!(format!("{}", NaiveTime::from_hms_milli(23, 56, 4, 12)), "23:56:04.012");
assert_eq!(format!("{}", NaiveTime::from_hms_micro(23, 56, 4, 1234)), "23:56:04.001234");
assert_eq!(format!("{}", NaiveTime::from_hms_nano(23, 56, 4, 123456)), "23:56:04.000123456");
Leap seconds may also be used.
assert_eq!(format!("{}", NaiveTime::from_hms_milli(6, 59, 59, 1_500)), "06:59:60.500");
sourceimpl FromStr for NaiveTime
impl FromStr for NaiveTime
Parsing a str
into a NaiveTime
uses the same format,
%H:%M:%S%.f
, as in Debug
and Display
.
Example
use chrono::NaiveTime;
let t = NaiveTime::from_hms(23, 56, 4);
assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t));
let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t));
let t = NaiveTime::from_hms_nano(23, 59, 59, 1_234_567_890); // leap second
assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t));
assert!("foo".parse::<NaiveTime>().is_err());
type Err = ParseError
type Err = ParseError
The associated error which can be returned from parsing.
sourceimpl Hash for NaiveTime
impl Hash for NaiveTime
NaiveTime
can be used as a key to the hash maps (in principle).
Practically this also takes account of fractional seconds, so it is not recommended. (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
sourceimpl Ord for NaiveTime
impl Ord for NaiveTime
sourceimpl PartialOrd<NaiveTime> for NaiveTime
impl PartialOrd<NaiveTime> for NaiveTime
sourcefn partial_cmp(&self, other: &NaiveTime) -> Option<Ordering>
fn partial_cmp(&self, other: &NaiveTime) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
1.0.0 · sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
sourceimpl Sub<Duration> for NaiveTime
impl Sub<Duration> for NaiveTime
A subtraction of Duration
from NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5), from_hmsm(3, 4, 2, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80), from_hmsm(3, 5, 6, 920));
assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280), from_hmsm(3, 5, 7, 670));
The subtraction wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), from_hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1), from_hmsm(3, 6, 0, 300));
sourceimpl Sub<FixedOffset> for NaiveTime
impl Sub<FixedOffset> for NaiveTime
sourceimpl Sub<NaiveTime> for NaiveTime
impl Sub<NaiveTime> for NaiveTime
Subtracts another NaiveTime
from the current time.
Returns a Duration
within +/- 1 day.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around
NaiveTime::signed_duration_since
.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), Duration::zero());
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), Duration::milliseconds(25));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), Duration::milliseconds(975));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), Duration::seconds(7));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), Duration::seconds(5 * 60));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), Duration::seconds(3 * 3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), Duration::seconds(-3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
Duration::milliseconds(1500));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), Duration::seconds(60));
assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
Duration::seconds(61));
type Output = OldDuration
type Output = OldDuration
The resulting type after applying the -
operator.
sourcefn sub(self, rhs: NaiveTime) -> OldDuration
fn sub(self, rhs: NaiveTime) -> OldDuration
Performs the -
operation. Read more
sourceimpl SubAssign<Duration> for NaiveTime
impl SubAssign<Duration> for NaiveTime
sourcefn sub_assign(&mut self, rhs: OldDuration)
fn sub_assign(&mut self, rhs: OldDuration)
Performs the -=
operation. Read more
sourceimpl Timelike for NaiveTime
impl Timelike for NaiveTime
sourcefn hour(&self) -> u32
fn hour(&self) -> u32
Returns the hour number from 0 to 23.
Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms(0, 0, 0).hour(), 0);
assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).hour(), 23);
sourcefn minute(&self) -> u32
fn minute(&self) -> u32
Returns the minute number from 0 to 59.
Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms(0, 0, 0).minute(), 0);
assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).minute(), 56);
sourcefn second(&self) -> u32
fn second(&self) -> u32
Returns the second number from 0 to 59.
Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms(0, 0, 0).second(), 0);
assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).second(), 4);
This method never returns 60 even when it is a leap second. (Why?) Use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000);
assert_eq!(leap.second(), 59);
assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
sourcefn nanosecond(&self) -> u32
fn nanosecond(&self) -> u32
Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms(0, 0, 0).nanosecond(), 0);
assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).nanosecond(), 12_345_678);
Leap seconds may have seemingly out-of-range return values.
You can reduce the range with time.nanosecond() % 1_000_000_000
, or
use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000);
assert_eq!(leap.nanosecond(), 1_000_000_000);
assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
sourcefn with_hour(&self, hour: u32) -> Option<NaiveTime>
fn with_hour(&self, hour: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the hour number changed.
Returns None
when the resulting NaiveTime
would be invalid.
Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano(7, 56, 4, 12_345_678)));
assert_eq!(dt.with_hour(24), None);
sourcefn with_minute(&self, min: u32) -> Option<NaiveTime>
fn with_minute(&self, min: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the minute number changed.
Returns None
when the resulting NaiveTime
would be invalid.
Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!(dt.with_minute(45), Some(NaiveTime::from_hms_nano(23, 45, 4, 12_345_678)));
assert_eq!(dt.with_minute(60), None);
sourcefn with_second(&self, sec: u32) -> Option<NaiveTime>
fn with_second(&self, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the second number changed.
Returns None
when the resulting NaiveTime
would be invalid.
As with the second
method,
the input range is restricted to 0 through 59.
Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!(dt.with_second(17), Some(NaiveTime::from_hms_nano(23, 56, 17, 12_345_678)));
assert_eq!(dt.with_second(60), None);
sourcefn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>
fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with nanoseconds since the whole non-leap second changed.
Returns None
when the resulting NaiveTime
would be invalid.
As with the nanosecond
method,
the input range can exceed 1,000,000,000 for leap seconds.
Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
assert_eq!(dt.with_nanosecond(333_333_333),
Some(NaiveTime::from_hms_nano(23, 56, 4, 333_333_333)));
assert_eq!(dt.with_nanosecond(2_000_000_000), None);
Leap seconds can theoretically follow any whole second. The following would be a proper leap second at the time zone offset of UTC-00:03:57 (there are several historical examples comparable to this “non-sense” offset), and therefore is allowed.
assert_eq!(dt.with_nanosecond(1_333_333_333),
Some(NaiveTime::from_hms_nano(23, 56, 4, 1_333_333_333)));
sourcefn num_seconds_from_midnight(&self) -> u32
fn num_seconds_from_midnight(&self) -> u32
Returns the number of non-leap seconds past the last midnight.
Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms(1, 2, 3).num_seconds_from_midnight(),
3723);
assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).num_seconds_from_midnight(),
86164);
assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 1_000).num_seconds_from_midnight(),
86399);
impl Copy for NaiveTime
impl Eq for NaiveTime
impl StructuralEq for NaiveTime
impl StructuralPartialEq for NaiveTime
Auto Trait Implementations
impl RefUnwindSafe for NaiveTime
impl Send for NaiveTime
impl Sync for NaiveTime
impl Unpin for NaiveTime
impl UnwindSafe for NaiveTime
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more