pub struct Duration { /* private fields */ }
Expand description
ISO 8601 time duration with nanosecond precision. This also allows for the negative duration; see individual methods for details.
Implementations
sourceimpl Duration
impl Duration
sourcepub fn weeks(weeks: i64) -> Duration
pub fn weeks(weeks: i64) -> Duration
Makes a new Duration
with given number of weeks.
Equivalent to Duration::seconds(weeks * 7 * 24 * 60 * 60)
with overflow checks.
Panics when the duration is out of bounds.
sourcepub fn days(days: i64) -> Duration
pub fn days(days: i64) -> Duration
Makes a new Duration
with given number of days.
Equivalent to Duration::seconds(days * 24 * 60 * 60)
with overflow checks.
Panics when the duration is out of bounds.
sourcepub fn hours(hours: i64) -> Duration
pub fn hours(hours: i64) -> Duration
Makes a new Duration
with given number of hours.
Equivalent to Duration::seconds(hours * 60 * 60)
with overflow checks.
Panics when the duration is out of bounds.
sourcepub fn minutes(minutes: i64) -> Duration
pub fn minutes(minutes: i64) -> Duration
Makes a new Duration
with given number of minutes.
Equivalent to Duration::seconds(minutes * 60)
with overflow checks.
Panics when the duration is out of bounds.
sourcepub fn seconds(seconds: i64) -> Duration
pub fn seconds(seconds: i64) -> Duration
Makes a new Duration
with given number of seconds.
Panics when the duration is more than i64::MAX
milliseconds
or less than i64::MIN
milliseconds.
sourcepub fn milliseconds(milliseconds: i64) -> Duration
pub fn milliseconds(milliseconds: i64) -> Duration
Makes a new Duration
with given number of milliseconds.
sourcepub fn microseconds(microseconds: i64) -> Duration
pub fn microseconds(microseconds: i64) -> Duration
Makes a new Duration
with given number of microseconds.
sourcepub fn nanoseconds(nanos: i64) -> Duration
pub fn nanoseconds(nanos: i64) -> Duration
Makes a new Duration
with given number of nanoseconds.
sourcepub fn span<F>(f: F) -> Duration where
F: FnOnce(),
pub fn span<F>(f: F) -> Duration where
F: FnOnce(),
Runs a closure, returning the duration of time it took to run the closure.
sourcepub fn num_minutes(&self) -> i64
pub fn num_minutes(&self) -> i64
Returns the total number of whole minutes in the duration.
sourcepub fn num_seconds(&self) -> i64
pub fn num_seconds(&self) -> i64
Returns the total number of whole seconds in the duration.
sourcepub fn num_milliseconds(&self) -> i64
pub fn num_milliseconds(&self) -> i64
Returns the total number of whole milliseconds in the duration,
sourcepub fn num_microseconds(&self) -> Option<i64>
pub fn num_microseconds(&self) -> Option<i64>
Returns the total number of whole microseconds in the duration,
or None
on overflow (exceeding 263 microseconds in either direction).
sourcepub fn num_nanoseconds(&self) -> Option<i64>
pub fn num_nanoseconds(&self) -> Option<i64>
Returns the total number of whole nanoseconds in the duration,
or None
on overflow (exceeding 263 nanoseconds in either direction).
sourcepub fn checked_add(&self, rhs: &Duration) -> Option<Duration>
pub fn checked_add(&self, rhs: &Duration) -> Option<Duration>
Add two durations, returning None
if overflow occurred.
sourcepub fn checked_sub(&self, rhs: &Duration) -> Option<Duration>
pub fn checked_sub(&self, rhs: &Duration) -> Option<Duration>
Subtract two durations, returning None
if overflow occurred.
sourcepub fn zero() -> Duration
pub fn zero() -> Duration
A duration where the stored seconds and nanoseconds are equal to zero.
sourcepub fn from_std(duration: Duration) -> Result<Duration, OutOfRangeError>
pub fn from_std(duration: Duration) -> Result<Duration, OutOfRangeError>
Creates a time::Duration
object from std::time::Duration
This function errors when original duration is larger than the maximum value supported for this type.
sourcepub fn to_std(&self) -> Result<Duration, OutOfRangeError>
pub fn to_std(&self) -> Result<Duration, OutOfRangeError>
Creates a std::time::Duration
object from time::Duration
This function errors when duration is less than zero. As standard library implementation is limited to non-negative values.
Trait Implementations
sourceimpl Add<Duration> for NaiveDate
impl Add<Duration> for NaiveDate
An addition of Duration
to NaiveDate
discards the fractional days,
rounding to the closest integral number of days towards Duration::zero()
.
Panics on underflow or overflow.
Use NaiveDate::checked_add_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
assert_eq!(from_ymd(2014, 1, 1) + Duration::zero(), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::seconds(86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::seconds(-86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(1), from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(-1), from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(364), from_ymd(2014, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(365*4 + 1), from_ymd(2018, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(365*400 + 97), from_ymd(2414, 1, 1));
sourceimpl Add<Duration> for NaiveDateTime
impl Add<Duration> for NaiveDateTime
An addition of Duration
to NaiveDateTime
yields another NaiveDateTime
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_add_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
from_ymd(2016, 7, 9).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::days(365),
from_ymd(2017, 7, 8).and_hms(3, 5, 7));
let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1),
from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));
type Output = NaiveDateTime
type Output = NaiveDateTime
The resulting type after applying the +
operator.
sourcefn add(self, rhs: OldDuration) -> NaiveDateTime
fn add(self, rhs: OldDuration) -> NaiveDateTime
Performs the +
operation. Read more
sourceimpl Add<Duration> for NaiveTime
impl Add<Duration> for NaiveTime
An addition of Duration
to NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(1), from_hmsm(3, 5, 8, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(60 + 4), from_hmsm(3, 6, 11, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::milliseconds(80), from_hmsm(3, 5, 7, 80));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(280), from_hmsm(3, 5, 8, 230));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(-980), from_hmsm(3, 5, 6, 970));
The addition wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), from_hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), from_hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), from_hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), from_hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1), from_hmsm(3, 5, 59, 300));
sourceimpl AddAssign<Duration> for NaiveDate
impl AddAssign<Duration> for NaiveDate
sourcefn add_assign(&mut self, rhs: OldDuration)
fn add_assign(&mut self, rhs: OldDuration)
Performs the +=
operation. Read more
sourceimpl AddAssign<Duration> for NaiveDateTime
impl AddAssign<Duration> for NaiveDateTime
sourcefn add_assign(&mut self, rhs: OldDuration)
fn add_assign(&mut self, rhs: OldDuration)
Performs the +=
operation. Read more
sourceimpl AddAssign<Duration> for NaiveTime
impl AddAssign<Duration> for NaiveTime
sourcefn add_assign(&mut self, rhs: OldDuration)
fn add_assign(&mut self, rhs: OldDuration)
Performs the +=
operation. Read more
sourceimpl Ord for Duration
impl Ord for Duration
sourceimpl PartialOrd<Duration> for Duration
impl PartialOrd<Duration> for Duration
sourcepub fn partial_cmp(&self, other: &Duration) -> Option<Ordering>
pub fn partial_cmp(&self, other: &Duration) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
1.0.0 · sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
sourceimpl Sub<Duration> for NaiveDate
impl Sub<Duration> for NaiveDate
A subtraction of Duration
from NaiveDate
discards the fractional days,
rounding to the closest integral number of days towards Duration::zero()
.
It is the same as the addition with a negated Duration
.
Panics on underflow or overflow.
Use NaiveDate::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
assert_eq!(from_ymd(2014, 1, 1) - Duration::zero(), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(-86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(1), from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(-1), from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(364), from_ymd(2013, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*4 + 1), from_ymd(2010, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*400 + 97), from_ymd(1614, 1, 1));
sourceimpl Sub<Duration> for NaiveDateTime
impl Sub<Duration> for NaiveDateTime
A subtraction of Duration
from NaiveDateTime
yields another NaiveDateTime
.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
from_ymd(2016, 7, 7).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::days(365),
from_ymd(2015, 7, 9).and_hms(3, 5, 7));
let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
type Output = NaiveDateTime
type Output = NaiveDateTime
The resulting type after applying the -
operator.
sourcefn sub(self, rhs: OldDuration) -> NaiveDateTime
fn sub(self, rhs: OldDuration) -> NaiveDateTime
Performs the -
operation. Read more
sourceimpl Sub<Duration> for NaiveTime
impl Sub<Duration> for NaiveTime
A subtraction of Duration
from NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5), from_hmsm(3, 4, 2, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80), from_hmsm(3, 5, 6, 920));
assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280), from_hmsm(3, 5, 7, 670));
The subtraction wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), from_hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1), from_hmsm(3, 6, 0, 300));
sourceimpl SubAssign<Duration> for NaiveDate
impl SubAssign<Duration> for NaiveDate
sourcefn sub_assign(&mut self, rhs: OldDuration)
fn sub_assign(&mut self, rhs: OldDuration)
Performs the -=
operation. Read more
sourceimpl SubAssign<Duration> for NaiveDateTime
impl SubAssign<Duration> for NaiveDateTime
sourcefn sub_assign(&mut self, rhs: OldDuration)
fn sub_assign(&mut self, rhs: OldDuration)
Performs the -=
operation. Read more
sourceimpl SubAssign<Duration> for NaiveTime
impl SubAssign<Duration> for NaiveTime
sourcefn sub_assign(&mut self, rhs: OldDuration)
fn sub_assign(&mut self, rhs: OldDuration)
Performs the -=
operation. Read more
impl Copy for Duration
impl Eq for Duration
impl StructuralEq for Duration
impl StructuralPartialEq for Duration
Auto Trait Implementations
impl RefUnwindSafe for Duration
impl Send for Duration
impl Sync for Duration
impl Unpin for Duration
impl UnwindSafe for Duration
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more