1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Copyright 2018 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.

//! A Vec-based container for a tree structure.

use std::num::NonZeroUsize;
use std::ops::{Add, Sub};

#[derive(Debug, Eq, PartialEq, Copy, Clone, PartialOrd)]
pub struct TreeIndex(NonZeroUsize);

impl TreeIndex {
    fn new(i: usize) -> Self {
        TreeIndex(NonZeroUsize::new(i).unwrap())
    }

    pub fn get(self) -> usize {
        self.0.get()
    }
}

impl Add<usize> for TreeIndex {
    type Output = TreeIndex;

    fn add(self, rhs: usize) -> Self {
        let inner = self.0.get() + rhs;
        TreeIndex::new(inner)
    }
}

impl Sub<usize> for TreeIndex {
    type Output = TreeIndex;

    fn sub(self, rhs: usize) -> Self {
        let inner = self.0.get().checked_sub(rhs).unwrap();
        TreeIndex::new(inner)
    }
}

#[derive(Debug, Clone, Copy)]
pub struct Node<T> {
    pub child: Option<TreeIndex>,
    pub next: Option<TreeIndex>,
    pub item: T,
}

/// A tree abstraction, intended for fast building as a preorder traversal.
#[derive(Clone)]
pub struct Tree<T> {
    nodes: Vec<Node<T>>,
    spine: Vec<TreeIndex>, // indices of nodes on path to current node
    cur: Option<TreeIndex>,
}

impl<T: Default> Tree<T> {
    // Indices start at one, so we place a dummy value at index zero.
    // The alternative would be subtracting one from every TreeIndex
    // every time we convert it to usize to index our nodes.
    pub fn with_capacity(cap: usize) -> Tree<T> {
        let mut nodes = Vec::with_capacity(cap);
        nodes.push(Node {
            child: None,
            next: None,
            item: <T as Default>::default(),
        });
        Tree {
            nodes,
            spine: Vec::new(),
            cur: None,
        }
    }

    /// Returns the index of the element currently in focus.
    pub fn cur(&self) -> Option<TreeIndex> {
        self.cur
    }

    /// Append one item to the current position in the tree.
    pub fn append(&mut self, item: T) -> TreeIndex {
        let ix = self.create_node(item);
        let this = Some(ix);

        if let Some(ix) = self.cur {
            self[ix].next = this;
        } else if let Some(&parent) = self.spine.last() {
            self[parent].child = this;
        }
        self.cur = this;
        ix
    }

    /// Create an isolated node.
    pub fn create_node(&mut self, item: T) -> TreeIndex {
        let this = self.nodes.len();
        self.nodes.push(Node {
            child: None,
            next: None,
            item,
        });
        TreeIndex::new(this)
    }

    /// Push down one level, so that new items become children of the current node.
    /// The new focus index is returned.
    pub fn push(&mut self) -> TreeIndex {
        let cur_ix = self.cur.unwrap();
        self.spine.push(cur_ix);
        self.cur = self[cur_ix].child;
        cur_ix
    }

    /// Pop back up a level.
    pub fn pop(&mut self) -> Option<TreeIndex> {
        let ix = Some(self.spine.pop()?);
        self.cur = ix;
        ix
    }

    /// Look at the parent node.
    pub fn peek_up(&self) -> Option<TreeIndex> {
        self.spine.last().copied()
    }

    /// Look at grandparent node.
    pub fn peek_grandparent(&self) -> Option<TreeIndex> {
        if self.spine.len() >= 2 {
            Some(self.spine[self.spine.len() - 2])
        } else {
            None
        }
    }

    /// Returns true when there are no nodes in the tree, false otherwise.
    pub fn is_empty(&self) -> bool {
        self.nodes.len() <= 1
    }

    /// Returns the length of the spine.
    pub fn spine_len(&self) -> usize {
        self.spine.len()
    }

    /// Resets the focus to the first node added to the tree, if it exists.
    pub fn reset(&mut self) {
        self.cur = if self.is_empty() {
            None
        } else {
            Some(TreeIndex::new(1))
        };
        self.spine.clear();
    }

    /// Walks the spine from a root node up to, but not including, the current node.
    pub fn walk_spine(&self) -> impl std::iter::DoubleEndedIterator<Item = &TreeIndex> {
        self.spine.iter()
    }

    /// Moves focus to the next sibling of the given node.
    pub fn next_sibling(&mut self, cur_ix: TreeIndex) -> Option<TreeIndex> {
        self.cur = self[cur_ix].next;
        self.cur
    }
}

impl<T> std::fmt::Debug for Tree<T>
where
    T: std::fmt::Debug,
{
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        fn debug_tree<T>(
            tree: &Tree<T>,
            cur: TreeIndex,
            indent: usize,
            f: &mut std::fmt::Formatter,
        ) -> std::fmt::Result
        where
            T: std::fmt::Debug,
        {
            for _ in 0..indent {
                write!(f, "  ")?;
            }
            writeln!(f, "{:?}", &tree[cur].item)?;
            if let Some(child_ix) = tree[cur].child {
                debug_tree(tree, child_ix, indent + 1, f)?;
            }
            if let Some(next_ix) = tree[cur].next {
                debug_tree(tree, next_ix, indent, f)?;
            }
            Ok(())
        }

        if self.nodes.len() > 1 {
            let cur = TreeIndex(NonZeroUsize::new(1).unwrap());
            debug_tree(self, cur, 0, f)
        } else {
            write!(f, "Empty tree")
        }
    }
}

impl<T> std::ops::Index<TreeIndex> for Tree<T> {
    type Output = Node<T>;

    fn index(&self, ix: TreeIndex) -> &Self::Output {
        self.nodes.index(ix.get())
    }
}

impl<T> std::ops::IndexMut<TreeIndex> for Tree<T> {
    fn index_mut(&mut self, ix: TreeIndex) -> &mut Node<T> {
        self.nodes.index_mut(ix.get())
    }
}